Scientific Frontline® On-Site Search Engine by Google Co-op

Current UTC Time
 
News Home, where you will find the "Current Top Stories"The Communication Center contains current news briefs from major Universities, NASA, ESA, and the top three Aviation Mfg.Science section contains all the latest knowledge in Medical Research, Archeology, Biology, and other General Science NewsCurrent Earth Science and Environmental discoveries.The E.A.R., Environmental Awareness Report. E.A.R. will keep you advised of Environmental Alerts, Government, University, and public projects. All the current space discoveries from Hubble, Spitzer, Chandra X-Ray, ESO, Gemini, Subaru, ESA, NASA, and many more. The latest in space theories from leading astronomers and scientist from around the world.The Space Weather Forecast Center by Scientific Frontline, Current up-to-date space weather, forecasts, alerts and warnings. Images from SOHO, GOES, and STEREO. Plus solar observations from Erika RixCurrent space missions newsThe Cassini Main Page. Containing all the latest news from the Cassini Spacecraft around Saturn. Leading into Cassini status reports, The Cassini Gallery of all the latest images from Cassini. Seeing Saturn and all her moons like never before.Daily Sky maps, Celestial Events Calendar.Observatories Gallery, images from The Great Observatories and other leaders in astronomy.The Stellar Nights  Gallery, An amateur astronomical collection from John Crilly, Richard Handy, Erika Rix, and Paul RixCloudy Nights Telescope Reviews / An Atronomical Community.The latest in Computer, Nanotechnology, and General Technological advancements.The latest in Aviation achievements in civil, military, and space aviationThe World News Report,  news from the Voxant Viral Syndication, known as the Newsroom. Contains the latest videos from major news sources.The news archive from Scientific Frontline's past articles. A world of knowledge at your fingertips.Abstracts, Journals, and Technical papers maintained by Scientific Frontline. The Gateway to all the galleries in the Scientific Frontline collectionThe Scientific Frontline IYA 2009 CoverageResearch Department | Staff and Researchers OnlySite Related links from major universities, government and private research labs.Assorted Downloads related to space, science, aviation, including screensavers and ASTROMONY SOFTWARE, and other endorsed programs.Words from Heidi-Ann Kennedy, Director Scientific FrontlineThe foundation of an online publication by SFL ORG. News Network called Scientific FrontlineContact page to Scientific Frontline / SFL ORG. News NetworkDisclaimer / Legal Notice for use of the SFL ORG. News Network's publication Scientific Frontline
 
 an online publication of the SFL ORG. Educational News Network

Huge pressures that melt diamond on planet Neptune determined by Sandia researchers

Wednesday, February 18, 2009

Technique may provide data for NIF nuclear fusion effort

Hi-Res Version
Marcus Knudson examines the focal point of his team's effort
More Information ROLLOVER

Credit: Randy Montoya SNL
 
Hi-Res Version
The solid and dotted lines in both graphs represent the same equation-of-state predictions for carbon by Sandia theorists.
More Information ROLLOVER

Credit: Sandia National Laboratories
The enormous pressures needed to melt diamond to slush and then to a completely liquid state have been determined ten times more accurately by Sandia National Laboratories researchers than ever before.

As a bonus to science, researchers Marcus Knudson, Mike Desjarlais, and Daniel Dolan discovered a triple point at which solid diamond, liquid carbon, and a long-theorized but never-before-confirmed state of solid carbon called bc8 were found to exist together.

Accurate knowledge of these changes of state are essential in simulating behaviors of celestial bodies, and to the effort to produce nuclear fusion at Lawrence Livermore National Laboratory’s National Ignition Facility in California.

The changes resemble those undergone by ice as it melts into water, but under much more extreme conditions.

Granted, it’s not immediately obvious why accelerating a projectile about the size of a stick of gum to 25 times the speed of a rifle bullet and smashing it into a target in central New Mexico would say anything about nuclear fusion or the state of diamonds on Neptune (the eighth planet from the sun).

It does because on Neptune, for example, much of the atmosphere is composed of methane (CH4). Under high pressure, methane decomposes, liberating its carbon. One question for astrophysicists in theorizing the planet’s characteristics is knowing the form that carbon takes in the planet’s interior. At what precise pressure does simple carbon form diamond? Is the pressure eventually great enough to liquefy the diamond, or form bc8, a solid that has yet other characteristics?

Liquid carbon is electrically conductive at these pressures, which means it affects the generation of magnetic fields,” says Desjarlais. “So, accurate knowledge of phases of carbon in planetary interiors makes a difference in computer models of the planet’s characteristics. Thus, better equations of state can help explain planetary magnetic fields that seem otherwise to have no reason to exist.”

At NIF in 2010, 192 laser beams are expected to focus on isotopes of hydrogen contained in a little spherical shell that may be made of diamond. The idea is to bring enough heat and pressure to bear to evenly squeeze the shell, which serves as a containment capsule. The contraction is expected to fuse the nuclei of deuterium and tritium within.

The success of this reaction would give more information about the effects of a hydrogen bomb explosion, making it less likely the U.S. would need to resume nuclear weapons tests. It could also be a step in learning how to produce a contained fusion reaction that could produce electrical energy for humanity from seawater, the most abundant material on Earth.

For the reaction to work, the spherical capsule must compress evenly. But at the enormous pressures needed, will the diamond turn to slush, liquid, or even to the solid bc8? A mixture of solid and liquid would create uneven pressures on the isotopes, thwarting the fusion reaction, which to be effective must offer deuterium and tritium nuclei no room to escape.

That problem can be avoided if researchers know at what pressure point diamond turns completely liquid. One laser blast could bring the diamond to the edge of its ability to remain solid, and a second could pressure the diamond wall enough that it would immediately become all liquid, avoiding the slushy solid-liquid state. Or a more powerful laser blast could cause the solid diamond to jump past the messy triple point, and past the liquid and solid bc8 mixture, to enter a totally liquid state. This would keep coherent the pressure on the nuclei being forced to fuse within.

The mixed phase regions, says Dolan, are good ones to avoid for fusion researchers. The Sandia work provides essentially a roadmap showing where those ruts in the fusion road lie.

Sandia researchers achieved these results by dovetailing theoretical simulations with laboratory work.

Simulation work led by Desjarlais used theory to establish the range of velocities at which projectiles, called flyer plates, should be sent to create the pressures needed to explore these high pressure phases of carbon and how the triple point would reveal itself in the shock velocities.

(The theory, called density functional theory, is a powerful method for solving Schrödinger’s equation for hundreds to thousands of atoms using today’s large computers.)

Using these results as guides, experimental results from fifteen flyer-plate flights — themselves powered by the extreme magnetic fields of Sandia’s Z machine — in work led by Knudson, then determined more exact change-of-state transition pressures than ever before determined. Even better, these pressures fell within the bounds set by theory, thus showing that the theory was accurate.

These experiments are much more accurate than ones previously performed with laser beams,” says Knudson. “Our flyer plates, with precisely measured velocities, strike several large diamond samples, which enables very accurate shock wave velocity measurements.”

Laser beam results, he says, are less accurate because they shock only very small quantities of material, and must rely on an extra step to infer the shock pressure and density.

Sandia’s magnetically driven plates measure about 4 cm by 1.7 cm cross section, are hundreds of microns thick, and impact three samples on each firing. Z’s target diamonds are each about 1.9 carats, while laser experiments use about 1/100 of a carat.

No, they’re not gemstones,” says Desjarlais about the Sandia targets.

The diamonds in fact are created through industrial processes and have no commercial value, says Dolan, though their scientific value has been large.

Source: Sandia National Laboratories

AddThis Social Bookmark Button

Scientific Frontline®
RSS Feeds

Scientific Frontline®
The Comm Center
The E.A.R.®
World News Report
Stellar Nights®
Cassini Gallery
Mars Gallery
Missions Gallery
Observatories Gallery
Space Weather Alerts
Events
Directors Chair

Scientific Frontline®
Is supported in part by “Readers Like You”
Did Increased Gene Duplication Set Stage for Human Evolution? Ancient 1.5 Million-Year-Old Footprints Show Earliest Evidence of Modern Foot Anatomy and Walking New Process Promises Bigger, Better Diamond Crystals Navigate Back or Forward Through Science News, Related Page or Pick an Article From The News Ticker.


Scientific Frontline®, Stellar Nights®, E.A.R.®, and Environmental Awareness Report®”
Are Registered Trademarks of the
Online Publication of the SFL ORG. Educational News Network
Oklahoma City, Oklahoma USA
A Not-for-Profit Educational News Service
© 2005 - 2009 All Rights Reserved


Home | Comm. Center | Science | Earth Science | Space | Space Weather Center | Aviation | Technology | Galleries | About Us | Contact Us | Site Map | FAQ