Scientific Frontline® On-Site Search Engine by Google Co-op
Current UTC Time
 
News Home, where you will find the "Current Top Stories"The Communication Center contains current news briefs from major Universities, NASA, ESA, and the top three Aviation Mfg.Science section contains all the latest knowledge in Medical Research, Archeology, Biology, and other General Science NewsCurrent Earth Science and Environmental discoveries.The E.A.R., Environmental Awareness Report. E.A.R. will keep you advised of Environmental Alerts, Government, University, and public projects. All the current space discoveries from Hubble, Spitzer, Chandra X-Ray, ESO, Gemini, Subaru, ESA, NASA, and many more. The latest in space theories from leading astronomers and scientist from around the world.The Space Weather Forecast Center by Scientific Frontline, Current up-to-date space weather, forecasts, alerts and warnings. Images from SOHO, GOES, and STEREO. Plus solar observations from Erika RixCurrent space missions newsThe Cassini Main Page. Containing all the latest news from the Cassini Spacecraft around Saturn. Leading into Cassini status reports, The Cassini Gallery of all the latest images from Cassini. Seeing Saturn and all her moons like never before.Daily Sky maps, Celestial Events Calendar.Manned Space Exploration Gallery, covering images and news briefs from current, past, and future space exploration missions including the ISS and Space Shuttle missions The Stellar Nights  Gallery, An amateur astronomical collection from John Crilly, Richard Handy, Erika Rix, and Paul RixCloudy Nights Telescope Reviews / An Atronomical Community.The latest in Computer, Nanotechnology, and General Technological advancements.The latest in Aviation achievements in civil, military, and space aviationThe World News Report,  news from the Voxant Viral Syndication, known as the Newsroom. Contains the latest videos from major news sources.The news archive from Scientific Frontline's past articles. A world of knowledge at your fingertips.Abstracts, Journals, and Technical papers maintained by Scientific Frontline. The Gateway to all the galleries in the Scientific Frontline collectionThe Scientific Frontline Discussion Rooms. Open to the public.upcoming events, seminars, and lectures from major universities, government, and privately sponsored programsSite Related links from major universities, government and private research labs.Assorted Downloads related to space, science, aviation, including screensavers and ASTROMONY SOFTWARE, and other endorsed programs.Words from Heidi-Ann Kennedy, Director Scientific FrontlineThe foundation of an online publication by SFL ORG. News Network called Scientific FrontlineContact page to Scientific Frontline / SFL ORG. News NetworkDisclaimer / Legal Notice for use of the SFL ORG. News Network's publication Scientific Frontline
 
 an online publication of the SFL ORG. Educational News Network

Old muscle gets new pep in UC Berkeley stem cell study

Tuesday, June 17, 2008

Irina Conboy and Morgan Carlson have learned how to trigger the rejuvenation of old, damaged muscles.

Credit: University of California, Berkeley / Roxanne Makasdjian /
Media Relations UC Berkeley



Old muscle got a shot of youthful vigor in a stem cell experiment by bioengineers at the University of California, Berkeley, setting the path for research on new treatments for age-related degenerative conditions such as muscle atrophy or Alzheimer's and Parkinson's diseases.

In a new study published June 15 in an advanced online issue of the journal Nature, researchers identified two key regulatory pathways that control how well adult stem cells repair and replace damaged tissue. They then tweaked how those stem cells reacted to those biochemical signals to revive the ability of muscle tissue in old mice to repair itself nearly as well as the muscle in the mice's much younger counterparts.

On the right side of this muscle tissue from a young mouse are healthy, new cells created to replace damaged tissue. This ability to regenerate new cells diminishes with age.
 
As muscle tissue ages, it loses its ability to adequately repair itself from damage. Instead of creating healthy, new cells to replace damaged ones, the old muscle tissue is left with fibroblasts and scar tissue, as shown here.
 
In this muscle tissue from an old mouse, UC Berkeley researchers manipulated the biochemical response of adult stem cells in the tissue, and the muscle was able to repair itself from damage almost as well as muscle from young mice.

Credit: Morgan Carlson and Irina Conboy / University of California, Berkeley
Irina Conboy, an assistant professor of bioengineering and an investigator at the Berkeley Stem Cell Center and at the California Institute for Quantitative Biosciences (QB3), led the research team conducting this study.

Because the findings relate to adult stem cells that reside in existing tissue, this approach to rejuvenating degenerating muscle eliminates the ethical and medical complications associated with transplanting tissues grown from embryonic stem cells.

"We are one step closer to having a point of intervention where we can rejuvenate the body's own stem cells so we don't have to suffer from some of the debilitating diseases associated with aging," said the study's lead author, Morgan Carlson, a recent Ph.D. graduate of Conboy's lab.

The researchers focused on the interplay of two competing molecular pathways that control the stem cells, which sit next to the mature, differentiated cells that make up our working body parts. When the mature cells are damaged or wear out, the stem cells are called into action to begin the process of rebuilding.

"We don't realize it, but as we grow our bodies are constantly being remodeled," said Conboy. "We are constantly falling apart, but we don't notice it much when we're young because we're always being restored. As we age, our stem cells are prevented, through chemical signals, from doing their jobs."

The good news, the researchers said, is that the stem cells in old tissue are still ready and able to perform their regenerative function if they receive the appropriate chemical signals. Studies have shown that when old tissue is placed in an environment of young blood, the stem cells behave as if they are young again.

"Conversely, we have found in a study published last year that even young stem cells rapidly age when placed among blood and tissue from old mice," said Carlson, who will stay on at UC Berkeley to expand his work on stem cell engineering either as a QB3 fellow or a postdoctoral researcher. He will be supervised by Conboy; Tom Alber, professor of biochemistry; and David Schaffer, associate director of the Berkeley Stem Cell Center and professor of chemical engineering.

Adult stem cells have a receptor called Notch that, when activated, tells them that it is time to grow and divide, the researchers said. But stem cells also have a receptor for the protein TGF-beta that sets off a chain reaction activating the molecule pSmad3 and ultimately producing cyclin-dependent kinase (CDK) inhibitors, which regulate the cell's ability to divide.

"Interestingly, activated Notch competes with activated pSmad3 for binding to the regulatory regions of the same CDK inhibitors in the stem cell," said Conboy. "We found that Notch is capable of physically kicking off pSmad3 from the promoters for the CDK inhibitors within the stem cell's nucleus, which tells us that a precise manipulation of the balance of these pathways would allow the ability to control stem cell responses."

Notch and TGF-beta are well known in molecular biology, but Conboy's lab is the first to connect them to the process of aging, and the first to show that they act in opposition to each other within the nucleus of the adult stem cell.

Aging and the inevitable march towards death are, in part, due to the progressive decline of Notch and the increased levels of TGF-beta, producing a one-two punch to the stem cell's capacity to effectively rebuild the body, the researchers said.

"What we discovered is the interplay between two pathways - one an aging pathway, and the other a youthful pathway," said Conboy.

But what would happen if researchers blocked the adult stem cells in old tissues from reacting to those TGF-beta signals? The researchers put that question to the test in a living organism by comparing the muscle regeneration capacity of old, 2-year-old mice, comparable in age to a 75- to 80-year-old human, with that of 2-month-old mice, similar in age to a 20- to 25-year-old human.

For a group of the old mice, the researchers disabled the "aging pathway" that tells stem cells to stop dividing by using an established method of RNA interference that reduced levels of pSmad3. The researchers then examined the muscle of the different groups of mice one to five days after injury to compare how well the tissue repaired itself.

As expected, the researchers found that muscle tissue in the young mice easily replaced damaged cells with new, healthy cells. In contrast, the areas of damaged muscle in the control group of old mice were characterized by fibroblasts and scar tissue.

However, muscles in the old mice whose stem cell "aging pathway" had been dampened showed levels of cellular regeneration that were comparable to their much younger peers, and that were 3 to 4 times greater than those of the group of "untreated" old mice.

The researchers cautioned that shutting down the TGF-beta/pSmad3 pathway altogether by turning off the gene that controls it could lead to many health problems. The ability to suppress cell division is critical in controlling the development of tumors, for instance.

"When we are young, there is an optimal balance between Notch and TGF-beta," said Conboy. "We need to find out what the levels of these chemicals are in the young so we can calibrate the system when we're older. If we can do that, we could rejuvenate tissue repair for a very long time."

The researchers also warn against interpreting this research as the cure-all for aging.

"We're not at a point where we're ready to inject ourselves with TGF-beta antibodies and call it a day," said Carlson. "There are multiple mechanisms involved in how our body functions. We know that TGF-beta is involved in one aspect of aging, but we don't know where it fits in the global scheme of aging."

In addition to their work on adult stem cells, Carlson and Conboy have also discovered that human embryonic stem cells can actually neutralize the effects of aging. Conboy received funding last year from the California Institute for Regenerative Medicine (CIRM) to pursue this line of research.

Michael Hsu, a former UC Berkeley postdoctoral researcher in bioengineering, also co-authored this paper.

This study was primarily supported by the National Institutes of Health and The Ellison Medical Foundation, with additional funds from a pre-doctoral training grant from CIRM.

Source: University of California, Berkeley / Sarah Yang

AddThis Social Bookmark Button

Scientific Frontline®
RSS Feeds

Scientific Frontline®
The Comm Center
The E.A.R.®
World News Report
Stellar Nights®
Cassini Gallery
Mars Gallery
Missions Gallery
Exploration Gallery
Space Weather Alerts
Events
Directors Chair

Scientific Frontline®
Is supported in part by “Readers Like You”
Mutant Mouse Mimics Human Bone Cancer Chemical Clues Point to Dusty Origin for Earth-like Planets For treating advanced Parkinson's, new research points to serotonin Navigate Back or Forward Through Science News, Related Page or Pick an Article From The News Ticker.


Scientific Frontline®, Stellar Nights®, E.A.R.®, and Environmental Awareness Report®”
Are Registered Trademarks of the
Online Publication of the SFL ORG. Educational News Network
Oklahoma City, Oklahoma USA
A Not-for-Profit Educational News Service
© 2005 - 2008 All Rights Reserved