Scientific Frontline® On-Site Search Engine by Google Co-op

Current UTC Time
 
News Home, where you will find the "Current Top Stories"The Communication Center contains current news briefs from major Universities, NASA, ESA, and the top three Aviation Mfg.Science section contains all the latest knowledge in Medical Research, Archeology, Biology, and other General Science NewsCurrent Earth Science and Environmental discoveries.The E.A.R., Environmental Awareness Report. E.A.R. will keep you advised of Environmental Alerts, Government, University, and public projects. All the current space discoveries from Hubble, Spitzer, Chandra X-Ray, ESO, Gemini, Subaru, ESA, NASA, and many more. The latest in space theories from leading astronomers and scientist from around the world.The Space Weather Forecast Center by Scientific Frontline, Current up-to-date space weather, forecasts, alerts and warnings. Images from SOHO, GOES, and STEREO. Plus solar observations from Erika RixCurrent space missions newsThe Cassini Main Page. Containing all the latest news from the Cassini Spacecraft around Saturn. Leading into Cassini status reports, The Cassini Gallery of all the latest images from Cassini. Seeing Saturn and all her moons like never before.Daily Sky maps, Celestial Events Calendar.Observatories Gallery, images from The Great Observatories and other leaders in astronomy.The Stellar Nights  Gallery, An amateur astronomical collection from John Crilly, Richard Handy, Erika Rix, and Paul RixCloudy Nights Telescope Reviews / An Atronomical Community.The latest in Computer, Nanotechnology, and General Technological advancements.The latest in Aviation achievements in civil, military, and space aviationThe World News Report,  news from the Voxant Viral Syndication, known as the Newsroom. Contains the latest videos from major news sources.The news archive from Scientific Frontline's past articles. A world of knowledge at your fingertips.Abstracts, Journals, and Technical papers maintained by Scientific Frontline. The Gateway to all the galleries in the Scientific Frontline collectionThe Scientific Frontline Discussion Rooms. Open to the public.upcoming events, seminars, and lectures from major universities, government, and privately sponsored programsSite Related links from major universities, government and private research labs.Assorted Downloads related to space, science, aviation, including screensavers and ASTROMONY SOFTWARE, and other endorsed programs.Words from Heidi-Ann Kennedy, Director Scientific FrontlineThe foundation of an online publication by SFL ORG. News Network called Scientific FrontlineContact page to Scientific Frontline / SFL ORG. News NetworkDisclaimer / Legal Notice for use of the SFL ORG. News Network's publication Scientific Frontline
an online publication of the SFL ORG. Educational News Network

Infrared Echoes give NASA's Spitzer a Supernova Flashback

Wednesday, October 1, 2008

Hi-Res and Caption | Annotated
Supernova Flashback

Credit: NASA/JPL-Caltech/E. Dwek and R. Arendt
 
Hi-Res and Caption
Cassiopeia A: Death Becomes Her

Credit: NASA/JPL-Caltech/STScI/CXC/SAO/O. Krause (Steward Observatory)
Hot spots near the shattered remains of an exploded star are echoing the blast's first moments, say scientists using data from NASA's Spitzer Space Telescope.

Eli Dwek of NASA's Goddard Space Flight Center in Greenbelt, Md. and Richard Arendt of the University of Maryland, Baltimore County, say these echoes are powered by radiation from Cassiopeia A supernova shock wave that blew the star apart some 11,000 years ago.

"We're seeing the supernova's first flash," Dwek said.

Previously, other Spitzer researchers discovered hot spots near the Cassiopeia A supernova remnant and recognized the spots' importance as light echoes of the original blast. Dwek and Arendt used Spitzer data to probe this hot dust and pin down the cause of the echoes more precisely.

Six knots of silicate dust near the remnant show temperatures between -173 and -123 degrees Celsius (-280 and -190 degrees Fahrenheit). Although this might seem frigid by earthly standards, such temperatures are downright hot compared to typical interstellar dust.

Writing in the October 1 issue of The Astrophysical Journal, the scientists show that the only event that could make the grains this hot is the powerful and short-lived pulse of ultraviolet radiation and X-rays that heralded the death of the star. The flash was a hundred billion times brighter than the sun, but lasted only a day or so.

"They've identified the precise event during the demolition of the star that produces the echo we see," said Michael Werner, the project scientist for Spitzer at NASA's Jet Propulsion Laboratory in Pasadena, Calif.

Light from the explosion reached Earth in the 17th century, but no one noticed. The Spitzer find gives astronomers a second chance to study the supernova as it unfolds.

Although the explosion originally escaped detection, its aftermath -- a hot, expanding gas cloud known as Cassiopeia A (Cas A, for short) -- is one of the best-studied supernova remnants. The blast zone lies 11,000 light-years away in the constellation Cassiopeia.

When a massive star runs out of nuclear fuel, its core collapses into a superdense, city-sized object called a neutron star. As the neutron star forms, it stiffens and rebounds. This triggers a mammoth shock wave that blows the star's outer layers to smithereens. The exiting shock creates a high-energy flash that precedes the supernova's rise in visible light.

Evidence for a flash associated with this "shock breakout" existed only in computer simulations until January 9, 2008. That's when NASA's Swift satellite detected a 5-minute-long X-ray pulse from galaxy NGC 2770. A few days later, a new supernova -- designated SN 2008D -- appeared in the galaxy.

The infrared echoes from Cas A arise from dust clouds about 160 light-years farther away than the remnant. The supernova's initial radiation pulse expands through space at the speed of light, then encounters the clouds and heats their dust grains. The dust, in turn, re-radiates the energy at infrared wavelengths.

The breakout radiation took 160 years to reach the clouds and, once heated, the dust's infrared energy had to make up the same distance. This extra travel time results in a 320-year offset between the supernova's initial outward-moving flash and arrival of the dust's infrared echo at Earth. The researchers plan to use the echoes to paint an intimate portrait of the explosion, the star and the immediate environment.

When light from the Cas A supernova first reached Earth in the late 1600s, no one reported seeing a new star. On August 16, 1680, the English astronomer John Flamsteed might have seen the supernova without recognizing it. He recorded a faint naked-eye star near the position of Cas A, but none exists there now.

NASA's Jet Propulsion Laboratory, Pasadena, Calif., manages the Spitzer mission for NASA's Science Mission Directorate, Washington. Science operations are conducted at the Spitzer Science Center at the California Institute of Technology, also in Pasadena. Caltech manages JPL for NASA.

Source: NASA / Spitzer

AddThis Social Bookmark Button

Scientific Frontline®
RSS Feeds

Scientific Frontline®
The Comm Center
The E.A.R.®
World News Report
Stellar Nights®
Cassini Gallery
Mars Gallery
Missions Gallery
Observatories Gallery
Space Weather Alerts
Events
Directors Chair

Scientific Frontline®
Is supported in part by “Readers Like You”
When It Comes to Galaxies, Diversity is Everywhere Sharpening Up Jupiter Scientists Hold Séance for Supernova Navigate Back or Forward Through Space News, Related Site Page or Pick an Article From The News Ticker.

Scientific Frontline®, Stellar Nights®, E.A.R.®, and Environmental Awareness Report®”
Are Registered Trademarks of the
Online Publication of the SFL ORG. Educational News Network
Oklahoma City, Oklahoma USA
A Not-for-Profit Educational News Service
© 2005 - 2008 All Rights Reserved