Scientific Frontline® On-Site Search Engine by Google Co-op

Current UTC Time
 
News Home, where you will find the "Current Top Stories"The Communication Center contains current news briefs from major Universities, NASA, ESA, and the top three Aviation Mfg.Science section contains all the latest knowledge in Medical Research, Archeology, Biology, and other General Science NewsCurrent Earth Science and Environmental discoveries.The E.A.R., Environmental Awareness Report. E.A.R. will keep you advised of Environmental Alerts, Government, University, and public projects. All the current space discoveries from Hubble, Spitzer, Chandra X-Ray, ESO, Gemini, Subaru, ESA, NASA, and many more. The latest in space theories from leading astronomers and scientist from around the world.The Space Weather Forecast Center by Scientific Frontline, Current up-to-date space weather, forecasts, alerts and warnings. Images from SOHO, GOES, and STEREO. Plus solar observations from Erika RixCurrent space missions newsThe Cassini Main Page. Containing all the latest news from the Cassini Spacecraft around Saturn. Leading into Cassini status reports, The Cassini Gallery of all the latest images from Cassini. Seeing Saturn and all her moons like never before.Daily Sky maps, Celestial Events Calendar.Observatories Gallery, images from The Great Observatories and other leaders in astronomy.The Stellar Nights  Gallery, An amateur astronomical collection from John Crilly, Richard Handy, Erika Rix, and Paul RixCloudy Nights Telescope Reviews / An Atronomical Community.The latest in Computer, Nanotechnology, and General Technological advancements.The latest in Aviation achievements in civil, military, and space aviationThe World News Report,  news from the Voxant Viral Syndication, known as the Newsroom. Contains the latest videos from major news sources.The news archive from Scientific Frontline's past articles. A world of knowledge at your fingertips.Abstracts, Journals, and Technical papers maintained by Scientific Frontline. The Gateway to all the galleries in the Scientific Frontline collectionThe Scientific Frontline Discussion Rooms. Open to the public.upcoming events, seminars, and lectures from major universities, government, and privately sponsored programsSite Related links from major universities, government and private research labs.Assorted Downloads related to space, science, aviation, including screensavers and ASTROMONY SOFTWARE, and other endorsed programs.Words from Heidi-Ann Kennedy, Director Scientific FrontlineThe foundation of an online publication by SFL ORG. News Network called Scientific FrontlineContact page to Scientific Frontline / SFL ORG. News NetworkDisclaimer / Legal Notice for use of the SFL ORG. News Network's publication Scientific Frontline
an online publication of the SFL ORG. Educational News Network

Astronomers Dissect a Supermassive Black Hole with Natural Magnifying Glasses

Friday, December 12, 2008

This animation shows the principle of macro- and microlensing. In "macrolensing", a galaxy plays the role of a cosmic magnifying glass or a natural telescope, an effect that was predicted by Albert Einstein as a consequence of his theory of general relativity. The light from a distant quasar is bent in its path and magnified by the gravitational field of the lensing galaxy. This proves very useful in astronomy as it allows us to observe distant objects that would otherwise be too faint to explore using currently available telescopes. In addition to macrolensing by the galaxy, stars in the lensing galaxy act as secondary lenses to produce an additional magnification. This secondary magnification is based on the same principle as macrolensing, but on a smaller scale, and since stars are much smaller than galaxies, is known as "microlensing". As the stars are moving in the lensing galaxy, the microlensing magnification also changes with time. From Earth, the brightness of the quasar images (four in the case of the Einstein Cross) flickers around a mean value, due to microlensing.

Credit: ESO


Combining a double natural "magnifying glass" with the power of ESO's Very Large Telescope, astronomers have scrutinized the inner parts of the disc around a supermassive black hole 10 billion light-years away. They were able to study the disc with a level of detail a thousand times better than that of the best telescopes in the world, providing the first observational confirmation of the prevalent theoretical models of such discs.

Hi-Res Version
The Einstein Cross
More Information ROLLOVER

Credit: ESO/F. Courbin et al.
The team of astronomers from Europe and the US studied the "Einstein Cross", a famous cosmic mirage. This cross-shaped configuration consists of four images of a single very distant source. The multiple images are a result of gravitational lensing by a foreground galaxy, an effect that was predicted by Albert Einstein as a consequence of his theory of general relativity. The light source in the Einstein Cross is a quasar approximately ten billion light-years away, whereas the foreground lensing galaxy is ten times closer. The light from the quasar is bent in its path and magnified by the gravitational field of the lensing galaxy.

This magnification effect, known as "macrolensing", in which a galaxy plays the role of a cosmic magnifying glass or a natural telescope, proves very useful in astronomy as it allows us to observe distant objects that would otherwise be too faint to explore using currently available telescopes. "The combination of this natural magnification with the use of a big telescope provides us with the sharpest details ever obtained," explains Frédéric Courbin, leader of the program studying the Einstein Cross with ESO's Very Large Telescope.

In addition to macrolensing by the galaxy, stars in the lensing galaxy act as secondary lenses to produce an additional magnification. This secondary magnification is based on the same principle as macrolensing, but on a smaller scale, and since stars are much smaller than galaxies, is known as "microlensing". As the stars are moving in the lensing galaxy, the microlensing magnification also changes with time. From Earth, the brightness of the quasar images (four in the case of the Einstein Cross) flickers around a mean value, due to microlensing. The size of the area magnified by the moving stars is a few light-days, i.e., comparable in size to the quasar accretion disc.

The microlensing affects various emission regions of the disc in different ways, with smaller regions being more magnified. Because differently sized regions have different colors (or temperatures), the net effect of the microlensing is to produce color variations in the quasar images, in addition to the brightness variations. By observing these variations in detail for several years, astronomers can measure how matter and energy are distributed about the supermassive black hole that lurks inside the quasar. Astronomers observed the Einstein Cross three times a month over a period of three years using ESO's Very Large Telescope (VLT), monitoring all the brightness and color changes of the four images.

"Thanks to this unique dataset, we could show that the most energetic radiation is emitted in the central light-day away from the supermassive black hole and, more importantly, that the energy decreases with distance to the black hole almost exactly in the way predicted by theory," says Alexander Eigenbrod, who completed the analysis of the data.

The use of the macro- and microlensing, coupled with the giant eye of the VLT, enabled astronomers to probe regions on scales as small as a millionth of an arcsecond. This corresponds to the size of a one euro coin seen at a distance of five million kilometers, i.e., about 13 times the distance to the Moon! "This is 1000 times better than can be achieved using normal techniques with any existing telescope," adds Courbin.

Measuring the way the temperature is distributed around the central black hole is a unique achievement. Various theories exist for the formation and fueling of quasars, each of which predicts a different profile. So far, no direct and model-independent observation has allowed scientists to validate or invalidate any of these existing theories, particularly for the central regions of the quasar. "This is the first accurate and direct measurement of the size of a quasar accretion disc with wavelength (color), independent of any model," concludes team member Georges Meylan.

Source: ESO

AddThis Social Bookmark Button

Scientific Frontline®
RSS Feeds

Scientific Frontline®
The Comm Center
The E.A.R.®
World News Report
Stellar Nights®
Cassini Gallery
Mars Gallery
Missions Gallery
Observatories Gallery
Space Weather Alerts
Events
Directors Chair

Scientific Frontline®
Is supported in part by “Readers Like You”
Unprecedented 16-Year Long Study Tracks Stars Orbiting Milky Way Black Hole Dark Energy Found Stifling Growth in Universe NASA Space Telescope Gives Scientists Depth Perception Navigate Back or Forward Through Space News, Related Site Page or Pick an Article From The News Ticker.

Scientific Frontline®, Stellar Nights®, E.A.R.®, and Environmental Awareness Report®”
Are Registered Trademarks of the
Online Publication of the SFL ORG. Educational News Network
Oklahoma City, Oklahoma USA
A Not-for-Profit Educational News Service
© 2005 - 2009 All Rights Reserved


Home | Comm. Center | Science | Earth Science | Space | Space Weather Center | Aviation | Technology | Galleries | About Us | Contact Us | Site Map | FAQ