Pages

Monday, December 1, 2025

Smart sensor tag protects sensitive goods

Inconspicuous: The biodegradable tag is as thin as a sheet of paper, but still able to measure the temperature and relative humidity.
Photo Credit: Empa

Researchers from Empa, EPFL and CSEM have developed a green smart sensing tag that measures temperature and humidity in real time – and can also detect whether a temperature threshold has been exceeded. In the future, this could be used to monitor sensitive shipments such as medicines or food. The sensor tag itself is completely biodegradable. 

Vast flows of goods circle the globe every day. They include particularly delicate shipments, such as certain vaccines, medicines and food products. To ensure that these products arrive safely at their destination, they must remain within a certain temperature and humidity range throughout the entire supply chain. But how do we ensure this? It is costly and unsustainable to equip every single shipment with silicon-based sensors and chips. And measurements at nodes in the supply chain tell you nothing about what has already happened to the delicate goods on their way thus far. 

Congenital muscle weakness: Muscles fail to regenerate

After a muscle injury, muscle stem cells (green) secrete laminin-α2 (magenta) into their surroundings to support their proliferation.
Image Credit: Timothy McGowan, Biozentrum, University of Basel

For more than two decades, researchers at the University of Basel have been investigating a severe form of muscular dystrophy in which muscles progressively degenerate. The research team has now discovered that the muscles’ ability to regenerate is also impaired. Future therapies should therefore aim not only to strengthen muscles but also to promote their regeneration. 

Roughly eight in every million children are born with a particularly severe form of muscle weakness known as LAMA2-related muscular dystrophy. In Switzerland, 18 cases are currently known. This rare hereditary disease is still incurable. The muscles of affected children gradually become weaker, including the respiratory musculature. In many cases, children do not reach adulthood. 

Helium leak on the exoplanet WASP-107b

Artist's view of WASP-107b. The planet’s low density and the intense irradiation from its star allow helium to escape the planet and form an asymmetric extended and diffuse envelope around it.
Image Credit: © University of Geneva/NCCR PlanetS/Thibaut Roger

An international team including UNIGE observed with the JWST huge clouds of helium escaping from the exoplanet Wasp-107b. 

An international team, including astronomers from the University of Geneva (UNIGE) and the National Centre of Competence in Research PlanetS, has observed giant clouds of helium escaping from the exoplanet WASP-107b. Obtained with the James Webb Space Telescope, these observations were modeled using tools developed at UNIGE. Their analysis, published in the journal Nature Astronomy, provides valuable clues for understanding this atmospheric escape phenomenon, which influences the evolution of exoplanets and shapes some of their characteristics. 

Sometimes a planet’s atmosphere escapes into space. This is the case for Earth, which irreversibly loses a little over 3 kg of matter (mainly hydrogen) every second. This process, called ‘‘atmospheric escape’’, is of particular interest to astronomers for the study of exoplanets located very close to their star, which, heated to extreme temperatures, are precisely subject to this phenomenon. It plays a major role in their evolution. 

The shape of the cell nucleus influences the success of cancer treatment

Photo Credit: Thor Balkhed

Cancer cells with a cell nucleus that is easily deformed are more sensitive to drugs that damage DNA. These are the findings of a new study by researchers at Linköping University. The results may also explain why combining certain cancer drugs can produce the opposite of the intended effect. The study has been published in the journal Nature Communications

A few years ago, a new type of drug was introduced that exploits deficiencies in cancer cells’ ability to repair damage to their DNA. These drugs, called PARP1 inhibitors, are used against cancers that have mutations in genes involved in DNA repair, such as the breast cancer gene 1 (BRCA1). This gene has such a central role in the cell’s ability to repair serious DNA damage that mutations in it greatly increase the risk of developing cancer, often at a young age. The risk is so high that some women with a mutated BRCA1 gene choose to have their breasts and ovaries surgically removed to prevent cancer. 

Probiotics and Prebiotics Offer Safer Alternatives to Antibiotics in Animal Agriculture

Livestock producers face multiple challenges when adopting probiotics and prebiotics, from selecting effective microbial strains to ensuring product safety, viability, and cost efficiency.
Photo Credit: Joachim Süß

Probiotics, prebiotics, and synbiotics enhance livestock gut health, immunity, and growth while reducing dependence on antibiotics 

A new study by researchers at Shinshu University highlights the essential role of gut microbiota in livestock health and productivity. The researchers show how probiotics, prebiotics, and synbiotics can safely enhance growth and immunity, and balance the growth of intestinal microbes, offering practical alternatives to antibiotics. As global restrictions on antibiotic use intensify, the findings support sustainable livestock management and contribute to reducing antimicrobial resistance risks.