. Scientific Frontline: Archaeology
Showing posts with label Archaeology. Show all posts
Showing posts with label Archaeology. Show all posts

Monday, August 1, 2022

New Mexico Mammoths Among Best Evidence for Early Humans in North America

Close up of the bone pile during excavation. This random mix of ribs, broken cranial bones, a molar, bone fragments, and stone cobbles is a refuse pile from the butchered mammoths. It was preserved beneath the adult mammoth’s skull and tusks.
Credit: Timothy Rowe / The University of Texas at Austin.

About 37,000 years ago, a mother mammoth and her calf met their end at the hands of human beings.

Bones from the butchering site record how humans shaped pieces of their long bones into disposable blades to break down their carcasses, and rendered their fat over a fire. But a key detail sets this site apart from others from this era. It’s in New Mexico – a place where most archaeological evidence does not place humans until tens of thousands of years later.

A recent study led by scientists with The University of Texas at Austin finds that the site offers some of the most conclusive evidence for humans settling in North America much earlier than conventionally thought.

The researchers revealed a wealth of evidence rarely found in one place. It includes fossils with blunt-force fractures, bone flake knives with worn edges, and signs of controlled fire. And thanks to carbon dating analysis on collagen extracted from the mammoth bones, the site also comes with a settled age of 36,250 to 38,900 years old, making it among the oldest known sites left behind by ancient humans in North America.

“What we’ve got is amazing,” said lead author Timothy Rowe, a paleontologist and a professor in the UT Jackson School of Geosciences. “It’s not a charismatic site with a beautiful skeleton laid out on its side. It’s all busted up. But that’s what the story is.”

Friday, July 29, 2022

Octopus lures from the Marianas are the oldest in the world

UOG archaeologist Michael Carson at the 2013 excavation of Sanhalom in Tinian, near the House of Taga. The excavation uncovered an octopus lure artifact from a layer that Carson has since carbon dated to 1500–1100 B.C., making it the oldest known artifact of its kind in the world.
Credit: MARC | University of Guam

A University of Guam archaeological study has determined that cowrie-shell artifacts found throughout the Marianas were lures used for hunting octopuses and that the devices, which have been found on islands across the Pacific, are the oldest known artifacts of their kind in the world.

The study used carbon dating of archaeological layers to confirm that lures found in Tinian and Saipan were from about 1500 B.C., or 3,500 years ago.

“That’s back to the time when people were first living in the Mariana Islands. So, we think these could be the oldest octopus lures in the entire Pacific region and, in fact, the oldest in the world,” said Michael T. Carson, an archaeologist with the Micronesian Area Research Center at UOG.

The study, titled “Let’s catch octopus for dinner: Ancient inventions of octopus lures in the Mariana Islands of the remote tropical Pacific,” is published in World Archaeology, a peer-reviewed academic journal. Carson, who holds a doctorate in anthropology, is the lead author of the study, assisted by Hsiao-chun Hung from The Australian National University in Canberra, Australia.

The fishing devices were made with cowrie shells, a type of sea snail and a favorite food of octopuses, that were connected by a fiber cord to a stone sinker and a hook.

They have been found in seven sites in the Mariana Islands. The oldest lures were excavated in 2011 from Sanhalom near the House of Taga in Tinian and in 2016 from Unai Bapot in Saipan. Other locations include Achugao in Saipan, Unai Chulu in Tinian, and Mochom at Mangilao Golf Course, Tarague Beach, and Ritidian Beach Cave in Guam.

Wednesday, July 27, 2022

Oldest DNA from domesticated American horse lends credence to shipwreck folklore

This tooth is all that remains from one of the first horses introduced to the Americas, and its DNA is helping rewrite the history of one of the best-known horse breeds in the United States: The Chincoteague pony.
Credit: Jeff Gage

An abandoned Caribbean colony unearthed centuries after it had been forgotten and a case of mistaken identity in the archaeological record have conspired to rewrite the history of a barrier island off the Virginia and Maryland coasts.

These seemingly unrelated threads were woven together when Nicolas Delsol, a postdoctoral researcher at the Florida Museum of Natural History, set out to analyze ancient DNA recovered from cow bones found in archaeological sites. Delsol wanted to understand how cattle were domesticated in the Americas, and the genetic information preserved in centuries-old teeth held the answer. But they also held a surprise.

“It was a serendipitous finding,” he said. “I was sequencing mitochondrial DNA from fossil cow teeth for my Ph.D. and realized something was very different with one of the specimens when I analyzed the sequences.”

That’s because the specimen in question, a fragment of an adult molar, wasn’t a cow tooth at all but instead once belonged to a horse. According to a study published this Wednesday in the journal PLOS ONE, the DNA obtained from the tooth is also the oldest ever sequenced for a domesticated horse from the Americas.

Tuesday, June 28, 2022

Rock art detection via machine learning model a breakthrough

A hypothetical example of possible rock art image detection on an image from Kakadu National Park.
 Source: Griffith University

Researchers have developed a way to detect the presence of rock art in remote, hard-to-reach areas in Australia’s rugged landscapes using Machine Learning (ML) methods.

Co-led by Dr Andrea Jalandoni, a digital archaeologist from Griffith University’s Centre for Social and Cultural Research, the study used hundreds of images of rock art found within Kakadu National Park to train a ML model to detect whether painted rock art was present within the image.

The model achieved an 89% success rate, meaning it determined which images contained rock art the vast majority of times.

“Some of these sites are not easily accessible, so alleviating some of the time, effort and expense to mount some explorative missions is of huge value to this type of archaeological research in some of the most remote areas of Australia,” Dr Jalandoni said.

“Once our ML model picks up whether an area photographed potentially contains previously undiscovered rock art, scientists can then go in and ground-truth the site to verify if there is rock art present and report on it further.”

Wednesday, June 22, 2022

Britain's earliest humans

Artist reconstruction of Homo heidelbergensis making a flint hand axe  
Credit: Department of Archaeology, University of Cambridge / Illustration by Gabriel Ugueto

Homo heidelbergensis may have occupied southern Britain between 560,000 and 620,000 years ago

Archaeological discoveries made on the outskirts of Canterbury, Kent (England) confirm the presence of early humans in southern Britain between 560,000 and 620,000 years ago. The breakthrough, involving controlled excavations and radiometric dating, comes a century after stone tool artefacts were first uncovered at the site. The research, led by archaeologists at the University of Cambridge, confirms that Homo heidelbergensis, an ancestor of Neanderthals, occupied southern Britain in this period – when it was still attached to Europe – and gives tantalizing evidence hinting at some of the earliest animal hide processing in European prehistory.

Located in an ancient riverbed, the Canterbury site was originally discovered in the 1920s when local laborers unearthed artefacts known as hand axes, but by applying modern dating techniques to new excavations their age has finally been determined. Led by Cambridge’s Department of Archaeology, the recent excavations have not only dated the original site but also identified new flint artefacts, including the very first ‘scrapers’ to be discovered there. The researchers have dated these stone tool artefacts using infrared-radiofluorescence (IR-RF) dating, a technique which determines the point at which feldspar sand-grains were last exposed to sunlight, and thereby establishing when they were buried.

Thursday, June 2, 2022

The Legacy of Colonialism Influences Science in the Caribbean

Map of the Caribbean region.
Generated with ArcGIS Pro online.

With the retreat of sprawling empires after the Second World War, one might think the colonial mindset of taking from smaller countries to support large nations would likewise be relegated to the past. But a new paper in The American Naturalist by an international collaboration of researchers shows how the legacy of colonialism remains deeply entrenched within scientific practice across the Caribbean archipelago.

The authors note that a colonial mindset in science, which does not account for the ways humans have interacted with and altered the Caribbean environment for centuries, skews our understanding of these systems. Also, the lack of local involvement in research and the extraction of natural history specimens have come at the expense of former colonies and occupied lands.

“I hope our study encourages more people to think about the impacts of their research and research practices, and to be more involved in the communities they are doing research in,” said Melissa Kemp, an assistant professor of integrative biology at The University of Texas at Austin who has done extensive fieldwork in the Caribbean and is one of the study’s three senior authors.

The paper’s other senior authors are Alexis Mychajliw, an assistant professor at Middlebury College, and Michelle LeFebvre, assistant curator of South Florida Archaeology and Ethnography at the Florida Museum of Natural History. The paper’s lead author is Ryan Mohammed, a Trinidadian biologist and postdoctoral research associate at Williams College.

Tuesday, May 31, 2022

Palms at the Poles: Fossil Plants Reveal Lush Southern Hemisphere Forests in Ancient Hothouse Climate

For decades, paleobotanist David Greenwood has collected fossil plants from Australia – some so well preserved it’s hard to believe they’re millions of years old. These fossils hold details about the ancient world in which they thrived, and Greenwood and a team of researchers including climate modeler and research David Hutchinson, from the University of New South Wales, and UConn Department of Geosciences paleobotanist Tammo Reichgelt, have begun the process of piecing together the evidence to see what more they could learn from the collection. Their findings are published in Paleoceanography & Paleoclimatology.

The fossils date back 55 to 40 million years ago, during the Eocene epoch. At that time, the world was much warmer and wetter, and these hothouse conditions meant there were palms at the North and South Pole and predominantly arid landmasses like Australia were lush and green. Reichgelt and co-authors looked for evidence of differences in precipitation and plant productivity between then and now.

Since different plants thrive under specific conditions, plant fossils can indicate what kinds of environments those plants lived in.

By focusing on the morphology and taxonomic features of 12 different floras, the researchers developed a more detailed view of what the climate and productivity was like in the ancient hothouse world of the Eocene epoch.

Reichgelt explains the morphological method relies on the fact that the leaves of angiosperms — flowering plants — in general have a strategy for responding to climate.

Friday, May 27, 2022

Researchers aim X-rays at century-old plant secretions for insight into Aboriginal Australian cultural heritage

Century-old plants exudate samples in amber jars. Researchers mapped the chemistry of these samples using high-energy photons. Scientists can analyze other historical artifact chemistries by applying this technique in the future.
Credit: Flinders University, South Australia, Kaurna Country

By revealing the chemistry of plant secretions, or exudates, these studies build a basis for better understanding and conserving art and tools made with plant materials.

For tens of thousands of years, Aboriginal Australians have created some of the world’s most striking artworks. Today their work continues long lines of ancestral traditions, stories of the past and connections to current cultural landscapes, which is why researchers are keen on better understanding and preserving the cultural heritage within.

In particular, knowing the chemical composition of pigments and binders that Aboriginal Australian artists employ could allow archaeological scientists and art conservators to identify these materials in important cultural heritage objects. Now, researchers are turning to X-ray science to help reveal the composition of the materials used in Aboriginal Australian cultural heritage – starting with the analysis of century-old samples of plant secretions, or exudates.

Aboriginal Australians continue to use plant exudates, such as resins and gums, to create rock and bark paintings and for practical applications, such as hafting stone points to handles. But just what these plant materials are made of is not well known.

Wednesday, May 25, 2022

Newly discovered ancient Amazonian cities reveal how urban landscapes were built without harming nature

Lidar image of the large settlement site Cotoca with cross sections A–B and C–D. m.a.s.l., meters above sea level.
Credit: University of Exeter

A newly discovered network of “lost” ancient cities in the Amazon could provide a pivotal new insight into how ancient civilizations combined the construction of vast urban landscapes while living alongside nature.

A team of international researchers, including Professor Jose Iriarte from the University of Exeter, has uncovered an array of intricate settlements in the Llanos de Mojos savannah-forest, Bolivia – that have laid hidden under the thick tree canopies for centuries.

The cities, built by the Casarabe communities between 500-1400 AD, feature an unprecedented array of elaborate and intricate structures unlike any previously discovered in the region – including 5m high terraces covering 22 hectares – the equivalent of 30 football pitches – and 21m tall conical pyramids.

Researchers also found a vast network of reservoirs, causeways and checkpoints, spanning several kilometers.

Saturday, May 21, 2022

How seascapes of the ancient world shaped genetic structure of European populations

Reconstructed view of the burial caves of the Xaghra Circle (Libby Mulqueeney after an original by Caroline Malone). Source Malone et al.2009. Mortuary Customs in Prehistoric Malta.Cambridge: McDonald, pp 375, 377. Malone, C., Stoddart, S., Trump, D. & Bonanno, A. (eds.). 2009. Mortuary Customs in prehistoric Malta. Excavations at the Brochtorff Circle at Xaghra (1987-1994). Cambridge: McDonald Institute.

Trinity scientists, along with international colleagues, have explored the importance of sea travel in prehistory by examining the genomes of ancient Maltese humans and comparing these with the genomes of this period from across Europe. Previous findings from the archaeological team had suggested that towards the end of the third millennium BC the use of the Maltese temples declined.

Now, using genetic data from ancient Maltese individuals the current interdisciplinary research team has suggested a potential contributing cause. Researchers found that these ancient humans lacked some of the signatures of genetic changes that swept across Europe in this period, because of their island separation. Scientists concluded that physical topography, in particular seascapes played a central role as barriers to genetic exchange.

The study is just published in the journal Current Biology.

Thursday, May 19, 2022

Research Confirms Eastern Wyoming Paleoindian Site as Americas’ Oldest Mine

UW Ph.D. student Chase Mahan inspects an artifact from excavation at the Powars II archaeological site in 2020. Mahan is one of the co-authors of a new paper that confirms the site at Sunrise in Platte County is the oldest documented red ocher mine -- and likely the oldest known mine of any sort -- in all of North and South America.
Credit: Spencer Pelton

Archaeological excavations led by Wyoming’s state archaeologist and involving University of Wyoming researchers have confirmed that an ancient mine in eastern Wyoming was used by humans to produce red ocher starting nearly 13,000 years ago.

That makes the Powars II site at Sunrise in Platte County the oldest documented red ocher mine -- and likely the oldest known mine of any sort -- in all of North and South America. The excavations, completed shortly before the 2020 death of famed UW archaeologist George Frison, confirmed theories he advanced stemming from research he began at the site in 1986.

The findings appear in “In situ evidence for Paleoindian hematite quarrying at the Powars II site (48PL330), Wyoming,” a paper published in the Proceedings of the National Academy of Sciences (PNAS), one of the world’s most prestigious multidisciplinary scientific journals covering the biological, physical and social sciences.

Tooth unlocks mystery of Denisovans in Asia

Views of the TNH2-1 specimen
Credit: Flinders University

What links a finger bone and some fossil teeth found in a cave in the remote Altai Mountains of Siberia to a single tooth found in a cave in the limestone landscapes of tropical Laos?

The answer to this question has been established by an international team of researchers from Laos, Europe, the US and Australia.

The human tooth was chanced upon during an archaeological survey in a remote area of Laos. The scientists have shown it originated from the same ancient human population first recognized in Denisova Cave (dubbed the Denisovans), in the Altai Mountains of Siberia (Russia).

The research team made the significant discovery during their 2018 excavation campaign in northern Laos. The new cave Tam Ngu Hao 2, also known as Cobra Cave, is located near to the famous Tam Pà Ling Cave where another important 70,000-year-old human (Homo sapiens) fossils had been previously found.

The international researchers are confident the two ancient sites are linked to Denisovans occupations despite being thousands of kilometers apart.

Monday, May 16, 2022

Ancient grains

Laura Motta, University of Michigan paleoethnobotanist, shows peas excavated from the Karanis site in Egypt.
Image credit: Eric Bronson, Michigan Photography

For a long time, researchers believed the diets of ancient people were nutritionally poor.

Everyday ancient Mediterranean civilizations relied on a diet of grains and pulses (chickpeas, lentils and other members of the bean family). Researchers thought this food lacked micronutrients such as zinc and iron, while also containing components that inhibit the uptake of what nutrients the food did have.

But a University of Michigan pilot study on crops grown in Egypt during Roman times suggests that ancient grains were more nutrient dense than grains grown in the same region today. Now, building on that study, U-M is part of a five-university consortium to receive a €3.7 million grant (about $3.85 million), called the AGROS project, awarded by the Belgian program Excellence of Science.

The researchers will use cutting-edge technologies to examine the nutritional profile of the food and how its nutrients changed based on the historical methods of food preparation.

Thursday, May 12, 2022

The genetic origins of the world's first farmers clarified

Ancient DNA extraction in Mainz’s lab. Work done in sterile conditions to avoid contamination from modern DNA.
Credit: Joachim Burger / JGU

The genetic origins of the first agriculturalists in the Neolithic period long seemed to lie in the Near East. A new study published in the journal Cell shows that the first farmers actually represented a mixture of Ice Age hunter-gatherer groups, spread from the Near East all the way to south-eastern Europe. Researchers from the University of Bern and the SIB Swiss Institute of Bioinformatics as well as from the Johannes Gutenberg University Mainz and the University of Fribourg were involved in the study. The method they developed could help reveal other human evolution patterns with unmatched resolution. 

The first signs of agriculture and a sedentary lifestyle are found in the so-called 'Fertile Crescent', a region in the Near East where people began to settle down and domesticate animals and plants about 11,000 years ago. The question of the origin of agriculture and sedentism has occupied researchers for over 100 years: did farming spread from the Near East through cultural diffusion or through migration? Genetic analyses of prehistoric skeletons so far supported the idea that Europe's first farmers were descended from hunter-gatherer populations in Anatolia. While that may well be the case, this new study shows that the Neolithic genetic origins cannot clearly be attributed to a single region. Unexpected and complex population dynamics occurred at the end of the Ice Age, and led to the ancestral genetic makeup of the populations who invented agriculture and a sedentary lifestyle i.e. the first Neolithic farmers. 

The first farmers emerged from a mixing process starting 14,000 years ago 

Previous analyses had suggested that the first Neolithic people were genetically different from other human groups from that time. Little was known about their origins. Nina Marchi, one of the study's first authors from the Institute of Ecology and Evolution at the University of Bern and SIB says: "We now find that the first farmers of Anatolia and Europe emerged from a population admixed between hunter-gatherers from Europe and the Near East." According to the authors, the mixing process started around 14,000 years ago, which was followed by a period of extreme genetic differentiation lasting several thousand years. 

A novel approach to model population history from prehistoric skeletons 

The Klein7 individual from the Kleinhadersdorf site in the Lower Austrian Weinviertel, whose genome was analyzed in the paper.
Credit: BDA / Christine Neugebauer-Maresch


This research was made possible by combining two techniques: the production of high-quality ancient genomes from prehistoric skeletons, coupled with demographic modeling on the resulting data. The research team coined the term "demo genomic modeling" for this purpose. "It is necessary to have genome data of the best possible quality so that the latest statistical genomic methods can reconstruct the subtle demographic processes of the last 30 thousand years at high resolution", says Laurent Excoffier, one of the senior authors of the study. Laurent Excoffier is a professor at the Institute of Ecology and Evolution at the University of Bern and group leader at SIB. He initiated the project together with Joachim Burger of the Johannes Gutenberg University in Mainz and Daniel Wegmann of the University of Fribourg. Nina Marchi adds: "Simply comparing the similarity of different ancient genomes is not enough to understand how they evolved. We had to reconstruct the actual histories of the populations studied as accurately as possible. This is only possible with complex population genetic statistics." 

Interdisciplinary key to solve such ancient puzzles 

Joachim Burger of the University of Mainz and second senior author emphasizes the necessity of interdisciplinarity: "It took close to ten years to gather and analyze the skeletons suitable for such a study. This was only possible by collaborating with numerous archaeologists and anthropologists, who helped us to anchor our models historically". The historical contextualization was coordinated by Maxime Brami, who works with Burger at Johannes Gutenberg University. The young prehistorian was surprised by some of the study's findings: "Europe's first farmers seem to be descended from hunter-gatherer populations that lived all the way from the Near East to the Balkans. This was not foreseeable archaeologically". 

Towards a general model of human population evolution 

Genetic data from fossils (skeletons) are badly damaged and must be processed accordingly using bioinformatics, as Daniel Wegmann from the University of Fribourg and group leader at SIB explains: "The high-resolution reconstruction of the prehistory of the Europeans was only possible thanks to methods that we specifically developed to analyze
ancient fossil genomes." Joachim Burger adds: "With these approaches, we have not only elucidated the origins of the world's first Neolithic populations, but we have established a general model of the evolution of human populations in Southwest Asia and Europe." 

"Of course, spatial and temporal gaps remain, and this does not imply the end of studies on the evolution of humans in this area", concludes Laurent Excoffier. Thus, the team's research plan is already set; they want to supplement their demographic model with genomes from the later phases of the Neolithic and Bronze Ages to provide an increasingly detailed picture of human evolution. 

Source/Credit: University of Bern

ant051222_01

Wednesday, April 27, 2022

Ancient hand grenades: explosive weapons in medieval Jerusalem during Crusades

A fragment of the sphero-conical vessel that was identified as containing a possibly explosive material from Jerusalem.
Credit: Robert Mason, Royal Ontario Museum.

New analysis into the residue inside ancient ceramic vessels from 11th-12th century Jerusalem has found that they were potentially used as hand grenades.

Previous research into the diverse sphero-conical containers, which are within museums around the world, had identified that they were used for a variety of purposes, including beer drinking vessels, mercury containers, containers for oil and containers for medicines.

This latest research, led by Griffith University’s Associate Professor Carney Matheson, confirmed that some vessels did indeed contain oils and medicines, and some contained scented oils, consistent with other recent research into the use of the vessels.

However, his findings also revealed that some of the vessels contained a flammable and probably explosive material that indicated they may have been used as ancient hand grenades.

Associate Professor Matheson, from Griffith’s Australian Research Centre for Human Evolution, said the explosive material he analyzed within the vessels suggested that there may have been a locally developed ancient explosive.

Wednesday, March 23, 2022

Preserving the past

Christina Chavez is Sandia National Laboratories’ first full-time archaeologist. She established the Labs’ cultural resources program within the Environment, Safety and Health group.
Photo by Bret Latter

When archaeologist Christina Chavez surveys Sandia National Laboratories land and finds rusted tobacco tins, ceramic fragments, glass shards or rocks resting in deliberate formations, she documents and determines who at the Labs needs to know.

“Archaeological resources are all around us, and even if most people don’t see them, there’s still a potential that they’re there,” Chavez said.

Chavez, the Labs’ first full-time archaeologist, works with teams throughout Sandia to ensure the U.S. Department of Energy remains in compliance with Section 106 of the National Historic Preservation Act. Established in 1966, the act requires federal agencies to consider the effects on historic properties when carrying out or funding projects. For Sandia, projects can mean anything from construction to an experiment or explosion taking place in remote areas.

Tuesday, March 22, 2022

Study ties present-day Native American tribe to ancestors in San Francisco Bay Area

U. of I. anthropology professor Ripan Malhi and his colleagues found genomic evidence linking present-day members of the Muwekma Ohlone Tribe in the San Francisco Bay Area with individuals who lived in the region several hundred to 2,000 years ago. 
Credit/Photo by L. Brian Stauffer

A genomic study of Native peoples in the San Francisco Bay Area finds that eight present-day members of the Muwekma Ohlone Tribe share ancestry with 12 individuals who lived in the region several hundred to 2,000 years ago.

Reported in the Proceedings of the National Academy of Sciences, the study challenges the notion that the Ohlone migrated to the area between A.D. 500-1,000, said Ripan Malhi, a professor of anthropology at the University of Illinois Urbana-Champaign, who led the research with Stanford University population genetics and society professor Noah Rosenberg in collaboration with a team of other scientists and members of the Muwekma Ohlone Tribe. The Muwekma Ohlone Tribal Council requested, contributed to and oversaw the study.

Previous studies of artifacts and language patterns suggested that the Ohlone were relative newcomers to the region. But the genomic research found a deep signal of continuity between the ancient population and the new one, the team reported.

Thursday, February 10, 2022

First Modern Humans Arrived in Europe Earlier Than Previously Known

Close-up of the Grotte Mandrin in southern France where scientists have uncovered layers of history that include both modern human and Neanderthal activity.
Credit: Ludovic Slimak

Some 30 years of archeological and other types of scientific research around the ancient artifacts and human remains in the Grotte Mandrin, located in the Rhone River Valley in southern France, has revealed that humans may have arrived in Europe about 10,000 years earlier than originally thought. This conclusion, drawn by an international team of researchers including Jason Lewis, PhD, of Stony Brook University, will help scientists rethink the arrival of humans into Europe and their replacement of and interactions with Neanderthals who also lived in the cave. The research is detailed in a paper published in Science Advances.

Previous studies have suggested that the first modern humans reached the European continent – originally from Africa and via the Levant, the eastern Mediterranean crossroads – between 43,000 and 48,000 years ago. But this discovery of modern human presence in the heart of the Rhone River Valley at Grotte Mandrin points to about 54,000 years ago.

The area of the cave excavated and analyzed that proved the evidence of modern human presence is Mandrin’s Layer E. It is sandwiched between 10 other layers of artifacts and fossils that contain evidence of Neanderthal life.

Wednesday, February 9, 2022

Climate drove 7,000 years of dietary changes

A mid-elevation landscape in the Central Andes.
Credit: Kurt Wilson

What a person eats influences a person’s health, longevity and experience in the world. Identifying the factors that determine people’s diets is important to answer bigger questions, such as how changing climates will influence unequal access to preferred foods.

A new study led by University of Utah anthropologists provides a blueprint to systematically untangle and evaluate the power of both climate and population size on the varied diets across a region in the past.

The authors documented that climate had the most influence over diet in the Central Andes between 400 and 7,000 years ago. This makes sense—the climate determines what resources are available for people in the area. The researchers were surprised that population size had little impact on diet variation, despite many complex societies emerging at various points over time that would have brought disparate communities together, fostered trade and increased competition.

The exception was during the Late Horizon (~480-418 yBP), when diets across the region became more similar to one another. This coincides with the Inca Empire that appears to have centralized enough political power to reduce local dietary decisions, and therby dampen influence of climate. The study presents a framework for exploring the relative role of climate and other socio-demographic factors on dietary change through time—including in the future.

Friday, January 28, 2022

Climate change in the Early Holocene - archaeology report

New insight into how our early ancestors dealt with major shifts in climate is revealed in research by an international team, led by Professor Rick Schulting from Oxford University’s School of Archaeology.

  • Radiocarbon dating from a prehistoric cemetery in Northern Russia reveals human stress caused by a global cooling event 8,200 years ago.
  • Early hunter gatherers developed more complex social systems and, unusually, a large cemetery when faced by climate change

Published in Nature Ecology & Evolution, the report reveals, new radiocarbon dates show the large Early Holocene cemetery of Yuzhniy Oleniy Ostrov, at Lake Onega, some 500 miles north of Moscow, previously thought to have been in use for many centuries, was, in fact, used for only one to two centuries. Moreover, this seems to be in response to a period of climate stress.

"The team believes the creation of the cemetery reveals a social response to the stresses caused by regional resource depression...[it] would have helped define group membership for what would have been previously dispersed bands of hunter-gatherers - mitigating potential conflict over access to the lake’s resources"

The team believes the creation of the cemetery reveals a social response to the stresses caused by regional resource depression. At a time of climate change, Lake Onega, as the second largest lake in Europe, had its own ecologically resilient microclimate. This would have attracted game, including elk, to its shores while the lake itself would have provided a productive fishery. Because of the fall in temperature, many of the region’s shallower lakes could have been susceptible to the well-known phenomenon of winter fish kills, caused by depleted oxygen levels under the ice.

Featured Article

Autism and ADHD are linked to disturbed gut flora very early in life

The researchers have found links between the gut flora in babies first year of life and future diagnoses. Photo Credit:  Cheryl Holt Disturb...

Top Viewed Articles