. Scientific Frontline: Conservation
Showing posts with label Conservation. Show all posts
Showing posts with label Conservation. Show all posts

Thursday, February 16, 2023

Canine distemper now threatens big cats in Nepal

 A Bengal tiger in the jungle. Although researchers have suspected distemper was infecting tigers and leopards, a new study is the first definitive proof of infection in Nepal’s big cats.
Photo Credit: R. Gilbert

Researchers with the College of Veterinary Medicine have confirmed the first cases of canine distemper virus (CDV), which can cause fatal neurological disease, in tigers and leopards in Nepal.

“Canine distemper virus has been repeatedly identified as a threat to wild carnivores and their conservation,” said Martin Gilbert, Cornell Wildlife Health Center wild carnivore health specialist and associate professor of practice in the Department of Population Medicine and Diagnostic Sciences. “This study is a first step to understanding the potential impact for Nepalese tiger and leopard populations.”

Although researchers have suspected distemper was infecting these species, the study, published Jan 28 in the journal Pathogens, is the first definitive proof of infection in Nepal’s big cats. The survey found 11% of tigers (three out of 28) and 30% of the leopards (six out of 20) had antibodies to CDV, indicating prior infection with the virus.

Relatively little is known about the status of Nepal’s leopards, but scientists believe the population is in decline due to a combination of poaching, habitat loss and human-wildlife conflict. Leopards also face increasing competition for space due to the expansion of the country’s tiger population. Could CDV push them even further into decline?

Feathered ‘fingerprints’ reveal potential motivation for migratory patterns of endangered seabirds

The Wandering Albatross has a wingspan of up to 3.5 meters.
Photo Credit: Paul Carroll

With the largest wingspan of any living bird, the Wandering Albatross is a giant of the sea. But like several other tube-nosed bird species, it is under threat of extinction.

Now, world first research from CSIRO and the University of South Australia shows that the feathers of seabirds such as the Wandering Albatross can provide clues about their long-distance foraging, which could help protect these species from further decline.

Comparing 15 element concentrations in the feathers of 253 tube-nosed seabirds of the Southern Hemisphere (representing 15 species), researchers found that the feathers of large seabirds (400g+) such as the Wandering Albatross (and other highly mobile seabirds) contained nutrients that did not solely match the availability of nutrients in the seawater at the collection site.

Conversely, smaller bird species that foraged more locally had feathers with trace element concentrations that were ten-to-hundred-fold higher than those of larger bird species, clearly representing the ocean basins in which they were feeding.

New study identifies key success factors for large carnivore rewilding efforts

A puma known as Anhanguera is released into Serra do Japi, Jundiaí, state of São Paulo, Brazil, as part of the Vida Livre da Mata Ciliar program.
Photo Credit: Associação Mata Ciliar.

New research led by the University of Oxford has identified the top factors that determine whether efforts to relocate large carnivores to different areas are successful or not. The findings, published today in Biology Conservation, could support global rewilding efforts, from lynx reintroductions in the UK to efforts to restore logged tropical forests.

As apex predators, large carnivores play crucial roles in ecosystems, however their numbers have plummeted over recent decades. Relocating large carnivores can support their conservation, for instance to reintroduce a species to an area where it has been exterminated, or to reinforce an existing population to increase its viability. But to date, there has been little information about what factors determine whether these (often costly) efforts are successful or not.

To investigate this, an international team led by researchers at the University of Oxford’s Department of Biology, Wildlife Conservation Research Unit (WildCRU), and School of Geography and the Environment analyzed data from almost 300 animal relocations which took place between 2007 and 2021. These spanned 22 countries in five continents, and involved 18 different carnivore species, including bears, hyaenas, big cats, and wild dogs.

Saturday, February 11, 2023

New damselfly sharing habitat with UK natives

A male small red-eyed damselfly.
Photo Credit Pam Taylor

A damselfly species that came to the UK from Europe poses a minimal risk to native damselflies and dragonflies; new research shows.

As tens of thousands of species shift their “range” (the areas they live in) due to climate change, the small red-eyed damselfly has spread northwards from the Mediterranean. It was first observed in the UK in 1999 and has since established itself.

The new study – by the University of Exeter and the UK Centre for Ecology & Hydrology – used data from the British Dragonfly Society to see if it had caused native damselflies and dragonflies to decline.

The results showed most native dragonflies and damselflies were either found more often or were unchanged in areas colonized by the small red-eyed damselfly.

However, two damselfly species might have been negatively affected, and more research is needed to investigate this.

“With range-shifting increasing globally, we need to understand what impact newly arrived species have on ecosystems,” said Dr Regan Early, of the Centre for Ecology and Conservation on Exeter's Penryn Campus in Cornwall.

Thursday, February 9, 2023

Doubling protected lands for biodiversity could require tradeoffs with other land uses

Scientists show how 30% protected land targets may not safeguard biodiversity hotspots and may negatively affect other sectors – and how data and analysis can support effective conservation and land use planning
Photo Credit: Federico Respini

Although more than half the world’s countries have committed to protecting at least 30% of land and oceans by 2030 in support of biodiversity, various questions emerge: Where and what type of land should be protected? How will new land protections impact carbon emissions and climate change, or the land needed for energy and food production? As a result, many decision makers are left questioning how to take action around protecting new land as they set their sights on achieving ambitious targets to preserve biodiversity in regions around the globe. New science tools can shed light on some of those questions.

A recent study led by climate scientists from the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) aims to inform the discussion around how protecting additional land to meet conservation goals may impact land use (such as agricultural) and land cover (such as grass, water, or vegetation). The research is among the first to explore how potential pathways to achieve these bold targets affect agricultural expansion, and its findings suggest that meeting the 30% protection targets could lead to substantial regional shifts in land use and in some cases still fail to protect the world’s most biodiverse hotspots.

“It is important that we protect land if we want to stem additional ecosystem degradation,” said the paper’s lead author Alan Di Vittorio, a research scientist in Berkeley Lab’s Earth and Environmental Sciences Area. “But protecting land entails tradeoffs with other land uses and could have negative impacts on the agricultural sector, such as less land for bioenergy crops or less forest land for timber.”

Marine reserves unlikely to restore marine ecosystems

The study used visual censuses and the analysis of stable isotopes to determine the abundance and trophic niche of carnivorous fish in marine reserves and areas open to fishing.
Photo Credit: Lluís Cardona

Protected marine areas are one of the essential tools for the conservation of natural resources affected by human impact —mainly fishing—, but are they enough to recover the functioning of these systems? A study published in the ICES Journal of Marine Science, led by researchers from the Biodiversity Research Institute (IRBio) of the University of Barcelona, in collaboration with researchers from the Group of Ecosystem Oceanography (GRECO) of the Oceanographic Center of the Balearic Islands, highlights the limitations of marine reserves in restoring food webs to their pristine state prior to the impact of intensive fishing.

Protected marine areas are one of the essential tools for the conservation of natural resources affected by human impact —mainly fishing—, but are they enough to recover the functioning of these systems? A study published in the ICES Journal of Marine Science, led by researchers from the Biodiversity Research Institute (IRBio) of the University of Barcelona, in collaboration with researchers from the Group of Ecosystem Oceanography (GRECO) of the Oceanographic Center of the Balearic Islands, highlights the limitations of marine reserves in restoring food webs to their pristine state prior to the impact of intensive fishing.

Sunday, February 5, 2023

Menindee Lakes water savings project: study shows poor government consultation and decision-making

The Darling River flows from north to south, with water overflowing into the Menindee Lakes, including Lake Menindee (top right) and Lake Cawndilla (top middle), both forming important wetlands within Kinchega National Park.
Photo Credit: Richard Kingsford

A controversial project in the Murray-Darling Basin was ‘misguided and poorly framed’, UNSW scientists say.

A study led by researchers at the Centre for Ecosystem Science at UNSW Sydney has examined a large water-savings project at Menindee Lakes in News South Wales.

The Menindee Lakes are part of the Murray-Darling Basin – the largest basin in Australia, spanning one-seventh of the continent. 2.2 million people live across its area, and its surface water supplies about 40 per cent of Australia’s irrigated agricultural output.

“The Menindee Lakes project is among the key mechanisms devised by governments to deliver on the Murray-Darling Basin Plan – a major inter-government initiative to provide water for rivers and wetlands in the basin,” said UNSW Professor Richard Kingsford, Director of the Centre for Ecosystem Science and co-author of the study.

The $151.8 million project’s goal is to save water for the Basin Plan by implementing infrastructure measures and rule changes to reduce water lost to evaporation from Menindee Lakes.

Rates of hatching failure in birds almost twice as high as previously estimated

Hatching failure rates in birds are almost twice as high as experts previously estimated, according to the largest ever study of its kind.
Photo Credit: Michaela Wenzler

New study from the University of Sheffield, IoZ, and UCL found more than one in six bird eggs fail to hatch. Hatching failure increases as species decline, so the new research could be used to predict what species are most at risk of extinction.

The work provides evidence that conservation managers can use to support their decision making, creating the best possible outcomes for threatened bird species recovery.

The new report highlights how conservationists can best support the recovery of threatened bird species, as it outlines how different conservation practices may affect hatching rates.

Researchers from the University of Sheffield, Institute of Zoology, and University College London (UCL) looked at 241 bird species across 231 previous studies to examine hatching failure. They found that nearly 17 per cent of bird eggs fail to hatch - almost double the figure reported 40 years ago of just over nine per cent.

Monday, January 30, 2023

Short-term bang of fireworks has long-term impact on wildlife

Photo Credit: Jill Wellington

Popular fireworks should be replaced with cleaner drone and laser light shows to avoid the “highly damaging” impact on wildlife, domestic pets and the broader environment, new Curtin-led research has found.

The new research, published in Pacific Conservation Biology, examined the environmental toll of firework displays by reviewing the ecological effects of Diwali festivities in India, Fourth of July celebrations across the United States of America, and other events in New Zealand and parts of Europe.

Examples included fireworks in Spanish festivals impacting the breeding success of House Sparrows, July firework displays being implicated in the decline of Brandt’s Cormorant colonies in California, and South American sea lions changing their behavior during breeding season as a result of New Year’s fireworks in Chile.

Lead author Associate Professor Bill Bateman, from Curtin’s School of Molecular and Life Sciences, said fireworks remained globally popular despite the overwhelming evidence that they negatively impacted wildlife, domestic animals and the environment.

The 'brown food web': dead vegetation plays essential role in desert ecosystems

Researchers from UNSW say these insights could be used by the conservation managers of arid ecosystems in Australia.
Resized Image using AI by SFLORG
Photo Credit: Prof. Mike Letnic.

A reduction in decaying vegetation can have significant impacts on the desert food chain, UNSW scientists have found.  

It’s well understood that overgrazing by herbivores like kangaroos can change ecosystems dramatically, but the impact excessive grazing has on the cover of dead vegetation – and cascading effects on small vertebrates like lizards, desert frogs and dunnarts – hasn’t been extensively studied.

Now, scientists at UNSW Sydney have shown that overgrazing can disrupt the desert food webs that exist between dead plant material, termites and animals that rely on termites as their main food source. This latest discovery has important implications for the conservation of biodiversity in arid Australia.

Researchers from the School of Biological, Earth & Environmental Sciences carried out field work in the arid region of South Australia and published their findings in the journal Ecosystems

Wednesday, January 25, 2023

Wolves eliminate deer on Alaskan Island then quickly shift to eating sea otters


Wolves on an Alaskan island caused a deer population to plummet and switched to primarily eating sea otters in just a few years, a finding scientists at Oregon State University and the Alaska Department of Fish and Game believe is the first case of sea otters becoming the primary food source for a land-based predator.

Using methods such as tracking the wolves with GPS collars and analyzing their scat, the researchers found that in 2015 deer were the primary food of the wolves, representing 75% of their diet, while sea otters comprised 25%. By 2017, wolves transitioned to primarily consuming sea otters (57% of their diet) while the frequency of deer declined to 7%. That pattern held through 2020, the end of the study period.

“Sea otters are this famous predator in the near-shore ecosystem and wolves are one of the most famous apex predators in terrestrial systems,” said Taal Levi, an associate professor at Oregon State. “So, it’s pretty surprising that sea otters have become the most important resource feeding wolves. You have top predators feeding on a top predator.”

Tuesday, January 24, 2023

Environment law fails to protect threatened species

The tiger quoll lost 82 per cent of its total referred habitat to projects considered unlikely to have a significant impact.
Photo Credit: JJ Harrison / Creative Commons Attribution-Share Alike 3.0 Unported

Federal environmental laws are failing to mitigate against Australia’s extinction crisis, according to University of Queensland research.

UQ PhD candidate Natalya Maitz led a collaborative project which analyzed potential habitat loss in Queensland and New South Wales and found the Environment Protection and Biodiversity Conservation 1999 (EPBC) Act is not protecting threatened species.

“The system designed to classify development projects according to their environmental impact is more or less worthless,” Ms. Maitz said.

“There’s no statistically significant difference between the amount of threatened habitat destroyed under projects deemed ‘significant’ or ‘not significant’ by the national biodiversity regulator.”

Under the EPBC Act, individuals or organizations looking to commence projects with a potentially ‘significant impact’ on protected species must seek further federal review and approval.

Parasite common in cats causes abortion in bighorn sheep

Bighorn sheep
Photo Credit: David Mark

A parasite believed to be present in more than 40 million people in the United States and often spread by domestic and wild cats could hamper ongoing conservation efforts in bighorn sheep.

A recent study led by Washington State University researchers at the Washington Animal Disease Diagnostic Laboratory found that Toxoplasma gondii, a parasite that infects most species of warm-blooded animals and causes the disease toxoplasmosis, is a cause of abortions, or pregnancy loss, as well as neonatal deaths in the sheep. Researchers documented five cases in bighorn sheep in a study published in the Journal of Wildlife Diseases, but additional studies are needed to determine the full scope of its impact, the authors said.

“We have seen Toxoplasma as a cause of fetal and neonate loss pretty commonly in domestic sheep, but we hadn’t seen pregnancy loss due to toxoplasmosis yet in bighorn sheep,” said Elis Fisk, the lead author of the study. “Unfortunately, it does appear to be causing abortions and some level of death in young bighorn lambs.”

Monday, January 23, 2023

Avian flu could decimate Australian black swans

Australian black swan
UQ research shows black swans lack some immune genes which help other wild waterfowl combat avian flu.
Photo Credit: Holger Detje

The unique genetics of the Australian black swan leaves the species vulnerable to viral illnesses such as avian flu, University of Queensland research has revealed.

The UQ-led study has generated a first-ever genome of the black swan which revealed the species lacks some immune genes which help other wild waterfowl combat infectious diseases.

Associate Professor Kirsty Short from UQ’s School of Chemistry and Molecular Biosciences said the geographic isolation of Australia’s black swans has meant limited exposure to pathogens commonly found in other parts of the world leading to reduced immune diversity.

“Unlike Mallard ducks for example, black swans are extremely sensitive to highly pathogenic avian influenza – HPAI which is often referred to as bird flu - and can die from it within three days,” Dr Short said.

Sunday, January 22, 2023

Traded species have distinctive life histories with extended reproductive lifecycles

Chameleon
Invasive species can cause huge environmental problems and monetary costs
Photo Credit: Pierre Bamin

A new study by researchers from Durham University, UK, Queen’s University Belfast, UK, University of Extremadura, Spain and Swansea University, UK have revealed that vertebrate species involved in the live wildlife trade have distinctive life history traits, biological characteristics that determine the frequency and timing of reproduction.

Researchers discovered that traded species produce large numbers of offspring across long reproductive lifespans, an unusual profile that is likely financially advantageous for trades involving captive breeding such as the pet, food and fur/skin trades.

Traded species that have also been introduced into non-native areas have a more extreme version of this same life history profile, suggesting that species most likely to become problematic invaders are at a heightened risk of trade and release.

The study suggests that humans favor species with high reproductive output for trade and release, which are the very species likely to become problematic invaders in future.

Researchers point out that life history traits are therefore potentially useful for predicting future invasions.

Thursday, January 19, 2023

Low-impact human recreation changes wildlife behavior

Camera trap images revealed how animals changed their use of areas around hiking trails in Glacier National Park during and after a COVID-19 closure.
Photo Credit: courtesy of Mammal Spatial Ecology and Conservation Lab at Washington State University.

Even without hunting rifles, humans appear to have a strong negative influence on the movement of wildlife. A study of Glacier National Park hiking trails during and after a COVID-19 closure adds evidence to the theory that humans can create a “landscape of fear” like other apex predators, changing how species use an area simply with their presence.

Washington State University and National Park Service researchers found that when human hikers were present, 16 out of 22 mammal species, including predators and prey alike, changed where and when they accessed areas. Some completely abandoned places they previously used, others used them less frequently, and some shifted to more nocturnal activities to avoid humans.

“When the park was open to the public, and there were a lot of hikers and recreators using the area, we saw a bunch of changes in how animals were using that same area,” said Daniel Thornton, WSU wildlife ecologist and senior author on the study published in the journal Scientific Reports. “The surprising thing is that there’s no other real human disturbance out there because Glacier is such a highly protected national park, so these responses really are being driven by human presence and human noise.”

Wednesday, January 4, 2023

Major Breakthrough as Scientists Sequence the Genomes of Endangered Sharks

Hammerhead Shark
Photo Credit: David Clode

The first-ever chromosome-level genome sequences completed for great hammerhead and shortfin mako sharks have shown that both species have experienced major population declines over a 250,000-year history. Low genetic diversity and signs of inbreeding add a layer of concern to the management of Critically Endangered great hammerhead sharks, whose populations have been in freefall recently due to overfishing for their highly valued fins. In contrast, with a larger effective population size (the ideal breeding population size) in the past and higher genetic diversity, shortfin mako sharks appear equipped to be more resilient to rapid environmental change: that is, if the current fishing pressure on them is substantially reduced.

“With their whole genomes deciphered at high resolution we have a much better window into the evolutionary history of these endangered species,” said Mahmood Shivji, Ph.D., professor at Nova Southeastern University’s (NSU) Halmos College of Arts and Sciences and director of the Save Our Seas Foundation Shark Research Center and NSU’s Guy Harvey Research Institute.

It’s a startling image that describes a milestone in conservation science for sharks. Shivji, Michael Stanhope, Ph.D., from Cornell University’s College of Veterinary Medicine and their collaborators have glanced back in history by sequencing to chromosome level the genomes (entire genetic blueprint) of great hammerhead and shortfin mako sharks. Their DNA timeline shows that their populations have declined substantially over 250,000 years. What the scientists have also found is worrying: great hammerhead sharks have low genetic variation, which makes them less resilient to adapting to our rapidly changing world. The species also shows signs of inbreeding, an issue that can lower the ability of its populations to survive.

Monday, December 19, 2022

Learning from habitat ‘haves’ to help save a threatened rattlesnake

The study suggests that a collection of six relatively closely situated but isolated populations of Eastern massasauga rattlesnakes in northeast Ohio could grow their numbers if strategic alterations were made to stretches of land between their home ranges.
Photo Credit: Scott Martin

Comparing the genetics and relocation patterns of habitat “haves” and “have-nots” among two populations of threatened rattlesnakes has produced a new way to use scientific landscape data to guide conservation planning that would give the “have-nots” a better chance of surviving.

The study suggests that a collection of six relatively closely situated but isolated populations of Eastern massasauga rattlesnakes in northeast Ohio could grow their numbers if strategic alterations were made to stretches of land between their home ranges. The findings contributed to the successful application for federal funding of property purchases to make some of these proposed landscape changes happen.

Reconnecting these populations could not only help restore Eastern massasaugas to unthreatened status, but establish a thriving habitat for other prey and predator species facing threats to their survival – satisfying two big-picture conservation concerns, researchers say.

“We aren’t just protecting massasaugas – we’re protecting everything else that’s there,” said H. Lisle Gibbs, professor of evolution, ecology and organismal biology at The Ohio State University and senior author of the study. “Even though we are focused on this species, protection of the habitat has all these collateral benefits.”

Monday, December 12, 2022

All West Coast Abalones at Risk of Extinction on the IUCN Red List

A red abalone is surrounded by a barren of purple sea urchins.
Photo Credit: Katie Sowul/California Department of Fish and Wildlife

All seven of the United States’ abalone species that live on the West Coast are now listed as Critically Endangered or Endangered on the International Union for Conservation of Nature, or IUCN, Red List of Threatened Species. These listings were based on a West Coast abalones assessment led by Laura-Rogers Bennett of the California Department of Fish and Wildlife, or CDFW, and University of California, Davis.

Six species — red, white, black, green, pink and flat abalone — are listed by IUCN as critically endangered. The northern abalone, also known as threaded or pinto abalone, is listed as endangered.

The IUCN Red List is considered the world’s most comprehensive inventory of the global conservation status of species. While the listing does not carry a legal requirement to aid imperiled species, it helps guide and inform global conservation and funding priorities.

Wednesday, November 30, 2022

Important discovery could help extinguish disease threat to koalas

Retrovirus is more prevalent in New South Wales and Queensland koalas, compared to animals in Victoria and South Australia.
Photo Credit: Jordan Whitt

University of Queensland virologists are a step closer to understanding a mysterious AIDS-like virus that is impacting koala populations differently across state lines.

Dr Michaela Blyton and Associate Professor Keith Chappell from the Australian Institute for Bioengineering and Nanotechnology (AIBN) and School of Chemistry and Molecular Biosciences, have uncovered another piece of the puzzle in their quest to halt the koala retrovirus known as KoRV - a condition strongly associated with diseases that cause infertility and blindness.

“We’ve learned that the retrovirus is far more prevalent in New South Wales and Queensland koalas, compared to the southern populations in Victoria and South Australia,” Dr Blyton said.

“Uncovering crucial patterns like these helps us learn how the disease is evolving, how it’s spreading, and how we can contain the damage through anti-viral medication or koala breeding programs.”

Koala numbers have fallen rapidly over the past decade due to widespread land clearing, climate change induced weather events, and disease.

Dr Blyton’s research has already established the link between KoRV and chlamydia, cystitis and conjunctivitis, which suggests the virus weakens the animal’s immune system.

Featured Article

Hypoxia is widespread and increasing in the ocean off the Pacific Northwest coast

In late August, OSU's Jack Barth and his colleagues deployed a glider that traversed Oregon’s near-shore waters from Astoria to Coos Bay...

Top Viewed Articles