. Scientific Frontline: Engineering
Showing posts with label Engineering. Show all posts
Showing posts with label Engineering. Show all posts

Friday, April 14, 2023

Researchers invent novel ingestible capsule X-ray dosimeter for real-time radiotherapy monitoring

Prof Liu Xiaogang (left) and Dr Hou Bo from the NUS Department of Chemistry were key members of the team that developed the novel capsule dosimeter.
Photo Credit: National University of Singapore

Affordable and ingestible capsule monitors radiation dose, pH and temperature in the gastrointestinal tract in real time, and could benefit gastric cancer patients undergoing radiotherapy

Gastric cancer is one of the most common cancers worldwide. A new invention by researchers from the National University of Singapore (NUS) could help improve the treatment of this cancer by enhancing the precision of radiotherapy, which is commonly used in combination with treatment options such as surgery, chemotherapy or immunotherapy.

In the field of modern radiotherapy, precision in targeting tumor tissue while minimizing damage to healthy tissue is crucial. However, low efficacy and variable outcomes remain a challenge due to patient diversity, treatment uncertainty, and differences in delivery types. Monitoring the dose of radiation delivered and absorbed in real-time, particularly in the gastrointestinal tract, could enhance the precision of radiotherapy to improve its effectiveness, but it is difficult to achieve. Additionally, existing methods used for monitoring biochemical indicators such as pH and temperature are inadequate for comprehensive evaluation of radiotherapy.

Wednesday, April 12, 2023

Researchers devise new system for turning seawater into hydrogen fuel

Researchers collect seawater in Half Moon Bay, California, in January 2023 for an experiment that turned the liquid into hydrogen fuel. From left: Joseph Perryman, a SLAC and Stanford postdoctoral researcher; Daniela Marin, a Stanford graduate student in chemical engineering and co-author; Adam Nielander, an associate staff scientist with the SUNCAT, a SLAC-Stanford joint institute; and Charline Rémy, a visiting scholar at SUNCAT.
Photo Credit: Adam Nielander/SLAC National Accelerator Laboratory

The SLAC-Stanford team pulled hydrogen directly from ocean waters. Their work could help efforts to generate low-carbon fuel for electric grids, cars, boats and other infrastructure.

Seawater’s mix of hydrogen, oxygen, sodium and other elements makes it vital to life on Earth. But that same complex chemistry has made it difficult to extract hydrogen gas for clean energy uses. 

Now, researchers at the Department of Energy's SLAC National Accelerator Laboratory and Stanford University with collaborators at the University of Oregon and Manchester Metropolitan University have found a way to tease hydrogen out of the ocean by funneling seawater through a double-membrane system and electricity. Their innovative design proved successful in generating hydrogen gas without producing large amounts of harmful byproducts. The results of their study, published in Joule, could help advance efforts to produce low-carbon fuels.

“Many water-to-hydrogen systems today try to use a monolayer or single-layer membrane. Our study brought two layers together,” said Adam Nielander, an associate staff scientist with the SUNCAT Center for Interface Science and Catalysis, a SLAC-Stanford joint institute. “These membrane architectures allowed us to control the way ions in seawater moved in our experiment.” 

Thursday, March 30, 2023

AI predicts enzyme function better than leading tools

An Illinois research team created an AI tool to predict an enzyme’s function from its sequence using the campus network and resource group servers. Pictured, from left: Tianhao You, Haiyang (Ocean) Cui, Huimin Zhao and Guangde Jiang.   
Photo Credit: Fred Zwicky

A new artificial intelligence tool can predict the functions of enzymes based on their amino acid sequences, even when the enzymes are unstudied or poorly understood. The researchers said the AI tool, dubbed CLEAN, outperforms the leading state-of-the-art tools in accuracy, reliability and sensitivity. Better understanding of enzymes and their functions would be a boon for research in genomics, chemistry, industrial materials, medicine, pharmaceuticals and more.

“Just like ChatGPT uses data from written language to create predictive text, we are leveraging the language of proteins to predict their activity,” said study leader Huimin Zhao, a University of Illinois Urbana-Champaign professor of chemical and biomolecular engineering. “Almost every researcher, when working with a new protein sequence, wants to know right away what the protein does. In addition, when making chemicals for any application – biology, medicine, industry – this tool will help researchers quickly identify the proper enzymes needed for the synthesis of chemicals and materials.”

The researchers will publish their findings in the journal Science and make CLEAN accessible online March 31.

Tuesday, March 28, 2023

Electricity from Air

Graphic illustration of titanium-air battery properties, in the style of the periodic table of elements
Illustration Credit: Courtesy of Technion – Israel Institute of Technology

Scientists at Forschungszentrum Jülich have developed and successfully lab-tested a novel titanium-air battery in cooperation with researchers at the Technion – Israel Institute of Technology in Haifa. This is the first time that experimental results of such a battery have been published, in which titanium is used as an active material. The metal is of interest as an electricity storage material because each atom can donate up to four electrons for charge transfer, while at the same time being relatively light and extremely resistant.

Scientific Results

Titanium is known as a passive, stable material. The researchers succeeded in utilizing its electrochemical potential for the storage of electrical energy by applying an ionic liquid called EMIm(HF)2.3F. Ionic liquids consist of salts with an atypical, very low melting point, which are used in a variety of applications due to their special electrical and material properties.

Eco-efficient cement could pave the way to a greener future

Wei Meng (left) and Bing Deng are co-authors on the study. Deng holds a sample of cement made with coal fly ash purified through a flash Joule heating-based process.
Photo Credit: Gustavo Raskosky/Rice University

The road to a net-zero future must be paved with greener concrete, and Rice University scientists know how to make it.

The production of cement, an ingredient in concrete, accounts for roughly 8% of the world’s annual carbon dioxide emissions, making it a significant target of greenhouse gas emissions reduction goals. Toward those efforts, the Rice lab of chemist James Tour used flash Joule heating to remove toxic heavy metals from fly ash, a powdery byproduct of coal-based electric power plants that is used frequently in concrete mixtures. Using purified coal fly ash reduces the amount of cement needed and improves the concrete’s quality.

In the lab’s study, replacing 30% of the cement used to make a batch of concrete with purified coal fly ash improved the concrete’s strength and elasticity by 51% and 28%, respectively, while reducing greenhouse gas and heavy metal emissions by 30% and 41%, respectively, according to the paper published in the Nature journal Communications Engineering.

Thursday, March 23, 2023

New wood-based technology removes 80 percent of dye pollutants in wastewater

Researchers at Chalmers have developed a new biobased material, a form of powder based on cellulose nanocrystals to purify water from pollutants, including textile dyes. When the polluted water passes through the filter with cellulose powder, the pollutants are absorbed, and the sunlight entering the treatment system causes them to break down quickly and efficiently. Laboratory tests have shown that at least 80 percent of the dye pollutants are removed with the new method and material, and the researchers see good opportunities to further increase the degree of purification.
Illustration Credit: David Ljungberg | Chalmers University of Technology

Clean water is a prerequisite for our health and living environment, but far from a given for everyone. According to the WHO, there are currently over two billion people living with limited or no access to clean water.

This global challenge is at the center of a research group at Chalmers University of Technology, which has developed a method to easily remove pollutants from water. The group, led by Gunnar Westman, Associate Professor of Organic Chemistry, focuses on new uses for cellulose and wood-based products and is part of the Wallenberg Wood Science Center.

The researchers have built up solid knowledge about cellulose nanocrystals* – and this is where the key to water purification lies. These tiny nanoparticles have an outstanding adsorption capacity, which the researchers have now found a way to utilize.

“We have taken a unique holistic approach to these cellulose nanocrystals, examining their properties and potential applications. We have now created a biobased material, a form of cellulose powder with excellent purification properties that we can adapt and modify depending on the types of pollutants to be removed,” says Gunnar Westman.

Wastewater could be the key to tracking more viruses than just COVID-19

Boehm lab graduate student Winnie Zambrana showing how wastewater samples are processed to test for evidence of viruses.
Photo Credit: Harry Gregory

Researchers have developed methods for using wastewater to track the levels of various respiratory viruses in a population. This can provide real-time information about virus circulation in a community.

Public health experts commonly track spikes in flu, respiratory syncytial virus (RSV), and rhinovirus circulating in a population through weekly reports from sentinel laboratories. These laboratories process samples from only severely ill patients, and it can take weeks for the results to get into the database. Now, for the first time, researchers at Stanford University, in collaboration with Emory University and Verily Life Sciences, have collected fast and accurate readings of a whole suite of respiratory viruses in their local Santa Clara sewer system.

Wastewater is currently the only source for accurate information about COVID-19 rates in communities. PCR testing is no longer widely available, and most people swab themselves at home where their results never reach public health agencies.

Prior to COVID-19, respiratory viruses had not been tracked through wastewater. Most of the viruses the scientists tested for in this study had never been measured in wastewater before. The findings are published in the March 22 issue of The Lancet Microbe.

Researchers create artificial enzyme for fast detection of disease-related hormone in sweat

Photo Credit: Courtesy of Oregon State University

Researchers in the Oregon State University College of Engineering have developed a handheld sensor that tests perspiration for cortisol and provides results in eight minutes, a key advance in monitoring a hormone whose levels are a marker for many illnesses including various cancers.

Findings were published in the journal ACS Applied Materials & Interfaces. The material and sensing mechanism in the new device could be easily engineered to detect other specific hormones, the researchers say – for example, progesterone, a key marker for women’s reproductive health and pregnancy outcomes.

“We took inspiration from the natural enzymes used in blood glucose meters sold at pharmacies,” said Larry Cheng, associate professor of electrical engineering and computer science. "In glucose meters, specific enzymes are applied to an electrode, where they can capture and react with glucose molecules to generate an electrical signal for detection. However, finding natural enzymes for cortisol detection is not straightforward, and natural enzymes are prone to instability and have a short lifespan.

Wednesday, March 22, 2023

Tackling counterfeit seeds with “unclonable” labels

As a way to reduce seed counterfeiting, MIT researchers developed a silk-based tag that, when applied to seeds, provides a unique code that cannot be duplicated.
Photo Credit: Photograph courtesy of the researchers. Edited by Jose-Luis Olivares, MIT
(CC BY-NC-ND 3.0)

Average crop yields in Africa are consistently far below those expected, and one significant reason is the prevalence of counterfeit seeds whose germination rates are far lower than those of the genuine ones. The World Bank estimates that as much as half of all seeds sold in some African countries are fake, which could help to account for crop production that is far below potential.

There have been many attempts to prevent this counterfeiting through tracking labels, but none have proved effective; among other issues, such labels have been vulnerable to hacking because of the deterministic nature of their encoding systems. But now, a team of MIT researchers has come up with a kind of tiny, biodegradable tag that can be applied directly to the seeds themselves, and that provides a unique randomly created code that cannot be duplicated.

The new system, which uses minuscule dots of silk-based material, each containing a unique combination of different chemical signatures, is described today in the journal Science Advances in a paper by MIT’s dean of engineering Anantha Chandrakasan, professor of civil and environmental engineering Benedetto Marelli, postdoc Hui Sun, and graduate student Saurav Maji.

New UBC water treatment zaps ‘forever chemicals’ for good

 

UBC researchers devised a unique adsorbing material that is capable of capturing all the PFAS present in the water supply.
Photo Credit: Mohseni lab

Engineers at the University of British Columbia have developed a new water treatment that removes “forever chemicals” from drinking water safely, efficiently – and for good.

“Think Brita filter, but a thousand times better,” says UBC chemical and biological engineering professor Dr. Madjid Mohseni, who developed the technology.

Forever chemicals, formally known as PFAS (per-and polyfluoroalkyl substances) are a large group of substances that make certain products non-stick or stain-resistant. There are more than 4,700 PFAS in use, mostly in raingear, non-stick cookware, stain repellents and firefighting foam. Research links these chemicals to a wide range of health problems including hormonal disruption, cardiovascular disease, developmental delays and cancer.

To remove PFAS from drinking water, Dr. Mohseni and his team devised a unique absorbing material that is capable of trapping and holding all the PFAS present in the water supply.

The PFAS are then destroyed using special electrochemical and photochemical techniques, also developed at the Mohseni lab and described in part in a paper published recently in Chemosphere.

Monday, March 20, 2023

Researchers create breakthrough spintronics manufacturing process that could revolutionize the electronics industry


University of Minnesota researchers, along with a team at the National Institute of Standards and Technology (NIST), developed a breakthrough process for making spintronic devices that has the potential to become the new industry standard for semiconductors chips that are essential to computers, smartphones and many other electronics. The new process will allow for faster, more efficient spintronics devices that can be scaled down smaller than ever before. ​​

The paper is published in Advanced Functional Materials.

“We believe we’ve found a material and a device that will allow the semiconducting industry to move forward with more opportunities in spintronics that weren’t there before for memory and computing applications,” said Jian-Ping Wang, senior author of the paper and professor in the College of Science and Engineering. 

The semiconductor industry is constantly trying to develop smaller and smaller chips that can maximize energy efficiency, computing speed and data storage capacity in electronic devices. Spintronic devices, which leverage the spin of electrons rather than the electrical charge to store data, provide a promising and more efficient alternative to traditional transistor-based chips. These materials also have the potential to be non-volatile, meaning they require less power and can store memory and perform computing even after you remove their power source.

Upgraded tumor model optimizes search for cancer therapies

Study co-authors (from left) Caleb Bashor, Antonios Mikos and Letitia Chim.
Photo Credit: Gustavo Raskosky/Rice University

Tumor cells won’t show their true selves in a petri dish, isolated from other cells.

To find out how they really behave, Rice University researchers developed an upgraded tumor model that houses osteosarcoma cells beside immune cells known as macrophages inside a three-dimensional structure engineered to mimic bone. Using the model, bioengineer Antonios Mikos and collaborators found that the body’s immune response can make tumor cells more resistant to chemotherapy.

The study, which is published in Biomaterials, sheds light on why some cancer drugs that appear to be good candidates in the lab do not perform as well as expected in actual patients. It underscores weaknesses in traditional tumor modeling and points the way toward more effective cancer therapies.

“Existing tumor models used to test drug performance do not mimic the actual environment in the human body closely enough,” Mikos said. “We are trying to create an environment for the experiment that is closer to what is happening in the organism of actual patients. Having such an environment will allow us to test multiple drugs in a time- and cost-effective way.”

Thursday, March 16, 2023

Low-cost device can measure air pollution anywhere

MIT researchers have made an open-source version of the “City Scanner” mobile pollution detector that lets people check air quality anywhere, cheaply. Pictured are some examples of the latest version of the device, called Flatburn, as well as a researcher attaching a prototype to a car.
Image Credits: Courtesy of the researchers. Edited by MIT News
(CC BY-NC-ND 3.0)

Air pollution is a major public health problem: The World Health Organization has estimated that it leads to over 4 million premature deaths worldwide annually. Still, it is not always extensively measured. But now an MIT research team is rolling out an open-source version of a low-cost, mobile pollution detector that could enable people to track air quality more widely.

The detector, called Flatburn, can be made by 3D printing or by ordering inexpensive parts. The researchers have now tested and calibrated it in relation to existing state-of-the-art machines, and are publicly releasing all the information about it — how to build it, use it, and interpret the data.

“The goal is for community groups or individual citizens anywhere to be able to measure local air pollution, identify its sources, and, ideally, create feedback loops with officials and stakeholders to create cleaner conditions,” says Carlo Ratti, director of MIT’s Senseable City Lab. 

“We’ve been doing several pilots around the world, and we have refined a set of prototypes, with hardware, software, and protocols, to make sure the data we collect are robust from an environmental science point of view,” says Simone Mora, a research scientist at Senseable City Lab and co-author of a newly published paper detailing the scanner’s testing process. The Flatburn device is part of a larger project, known as City Scanner, using mobile devices to better understand urban life.

Wednesday, March 15, 2023

A new control switch could make RNA therapies easier to program

MIT researchers demonstrated that their RNA sensor could accurately identify cells expressing a mutated version of the p53 gene, which drives cancer development.
Image Credits: iStock, edited by MIT News
(CC BY-NC-ND 3.0)

Using an RNA sensor, MIT engineers have designed a new way to trigger cells to turn on a synthetic gene. Their approach could make it possible to create targeted therapies for cancer and other diseases, by ensuring that synthetic genes are activated only in specific cells.

The researchers demonstrated that their sensor could accurately identify cells expressing a mutated version of the p53 gene, which drives cancer development, and turn on a gene encoding a fluorescent protein only within those cells. In future work, they plan to develop sensors that would trigger production of cell-killing proteins in cancer cells, while sparing healthy cells.

“There’s growing interest in reducing off-target effects for therapeutics,” says James Collins, the Termeer Professor of Medical Engineering and Science in MIT’s Institute for Medical Engineering and Science (IMES) and Department of Biological Engineering. “With this system, we could target very specific disease cells and tissues, which opens up the possibility of identifying cancer cells and then delivering highly potent therapeutics.”

This approach could also be used to develop treatments for other diseases, including viral or bacterial infections, the researchers say.

Game-changing high-performance semiconductor material could help slash heat emissions

WVU researchers Sergio Andres Paredes Navia, Cesar Octavio Romo de la Cruz, Liang Liang and Ellena Gemmen use an electron microscope to study the nanostructure of a new oxide ceramic material with the potential to make thermoelectric generators efficient enough to capture a significant portion of the waste heat that industrial systems like power plants emit.
Photo Credit: Courtesy of West Virginia University

Researchers at West Virginia University have engineered a material with the potential to dramatically cut the amount of heat power plants release into the atmosphere.

A team led by Xueyan Song, professor and George B. Berry Chair of Engineering at the Benjamin M. Statler College of Engineering and Mineral Resources, has created an oxide ceramic material that solves a longstanding efficiency problem plaguing thermoelectric generators. Those devices can generate electricity from heat, including power plant heat emissions, which contribute to global warming.

The breakthrough oxide ceramic Song’s team produced “achieved a record-high performance that had been deemed impossible,” she said. “We demonstrated the best thermoelectric oxide ceramics reported in the field worldwide over the past 20 years, and the results open up new research directions that could further increase performance.”

Oxide ceramics are from the same family as materials like pottery, porcelain, clay bricks, cement and silicon, but contain various metallic elements. They’re hard, resistant to heat and corrosion, and well-suited for high-temperature applications in air. They can serve as the material for thermoelectric generator components.

World’s first completely roll-to-roll printable perovskite solar cell

Dr David Beynon (Left) and Dr Ershad Parvazian (Right) hold a sample of the new fully roll-to-roll (R2R) coated device.
Photo Credit: Courtesy of Swansea University

Swansea University has established a low-cost and scalable carbon ink formulation capable of unlocking, for the first time, the potential for perovskite solar cells to be manufactured at scale.

Using slot die coating in a roll-to-roll (R2R) process, academics from the SPECIFIC Innovation and Knowledge Centre at Swansea University have established a way to create “fully printable” perovskite photovoltaics (PV), a term often used but, until now, incorrect.

The team searched for an alternative to the gold electrode that is typically applied using an expensive and slow evaporation process after the device has been printed.

Dr David Beynon, Senior Research Officer at SPECIFIC, said: “The key was identifying the right solvent mix, one which dries as a film without dissolving the underlying layer.

“X-ray diffraction analysis showed carbon electrode ink is capable of this when formulated with an orthogonal solvent system.

“This innovative layer can be applied continuously and compatibly with the underlying layers at a low temperature and high speed.”

Monday, March 13, 2023

Hitchhiker plants inspire improved techniques for reattaching tendon to bone

The unique array of hooks on the fruit of hitchhiker plant H. palermi led researchers at the Center for Engineering MechanoBiology to develop improved suturing techniques for surgically repairing tissues.
 Image Credit: Genin laboratory

For most people, getting burrs stuck to your clothes during a hike is nothing more than a nuisance, something to pick off and throw out when you get home. But for scientists at the Center for Engineering MechanoBiology (CEMB), the hooks on these little hitchhikers are inspiring new suturing schemes for surgical reattachment of tendon to bone. 

Tendon-to-bone reattachment is required in many surgical procedures, perhaps most commonly in repairing torn rotator cuff tendons in the shoulder, a condition that will affect more than 30% of the population over 60. Current suturing methods fail to distribute stress evenly, leading to failure rates as high as 94% due to ineffective attachment and re-tearing of sutures.

Cow dung possible sustainable material of the future, study finds

Photo Credit: Jonas Koel

Livestock dung could be used to create the next generation of cellulosic materials, according to a new report.

Livestock dung is typically used as a fertilizer or as a source of biogas for green energy applications, but the study, led by scientists at Scotland’s Rural College (SRUC) in collaboration with the universities of Bristol and Edinburgh, reviewed recent research into the development of high-value manure-derived materials from ruminant animals such as cattle.

They found that dung has been largely overlooked despite the variety of different applications for recycled ruminant waste biomass (RWB).

The most common applications use manure in combination with other components to create composite materials such as plastic, recycled card and paper or concrete. However, it could also be used for the extraction of nanocellulose - a prospective bio-based and biodegradable material of the future.

Currently, there is a trade-off between the performance of the material and the amount of processing required to achieve this – limiting the capacity of RWB to replace conventional materials on a commercial level.

World’s fastest burst-mode X-ray camera hits the road

Sandia National Laboratories’ Quinn Looker inspects sensors used in the ultrafast X-ray imaging camera.
Photo Credit: Craig Fritz

Nuclear reactions are fast. Really fast. Faster than billionths of a second. Your best shot at catching one is with a high-speed X-ray camera that can only be obtained from the Department of Energy’s Sandia National Laboratories. But these cameras could soon become more widely available.

Sandia has partnered with Albuquerque-based startup Advanced hCMOS Systems (pronounced “H C moss”) to commercialize ultrafast imaging technology invented at the Labs and used extensively in fusion research. If successful, the collaboration could move the world more quickly to limitless clean energy by accelerating such research, while potentially impacting many other research and development areas.

“A perfect example is glass research,” said Liam Claus, cofounder of Advanced hCMOS Systems. “The Gorilla Glass that’s in your iPhone so it doesn’t shatter every time it slips out of your hand — there’s a ton of materials science that’s gone into that. They need to understand how it fractures, and glass fractures can propagate at extremely high speeds.”

New “traffic cop” algorithm helps a drone swarm stay on task

MIT engineers have developed a method to tailor any wireless network to handle a high load of time-sensitive data coming from multiple sources.
Illustration Credit: Christine Daniloff, MIT
(CC BY-NC-ND 3.0)

How fresh is your data? For drones searching a disaster zone or robots inspecting a building, working with the freshest data is key to locating a survivor or reporting a potential hazard. But when multiple robots simultaneously relay time-sensitive information over a wireless network, a traffic jam of data can ensue. Any information that gets through is too stale to consider as a useful, real-time report.

Now, MIT engineers may have a solution. They’ve developed a method to tailor any wireless network to handle a high load of time-sensitive data coming from multiple sources. Their new approach, called WiSwarm, configures a wireless network to control the flow of information from multiple sources while ensuring the network is relaying the freshest data.

The team used their method to tweak a conventional Wi-Fi router, and showed that the tailored network could act like an efficient traffic cop, able to prioritize and relay the freshest data to keep multiple vehicle-tracking drones on task.

The team’s method, which they will present in May at IEEE’s International Conference on Computer Communications (INFOCOM), offers a practical way for multiple robots to communicate over available Wi-Fi networks so they don’t have to carry bulky and expensive communications and processing hardware onboard.

Featured Article

Autism and ADHD are linked to disturbed gut flora very early in life

The researchers have found links between the gut flora in babies first year of life and future diagnoses. Photo Credit:  Cheryl Holt Disturb...

Top Viewed Articles