. Scientific Frontline: Neuroscience
Showing posts with label Neuroscience. Show all posts
Showing posts with label Neuroscience. Show all posts

Wednesday, April 19, 2023

Groundbreaking Parkinson’s Research

Roxana Burciu’s Motor Neuroscience and Neuroimaging Lab is using custom-made MRI equipment that allows her to study the brain activity in people with lower limb symptoms of Parkinson’s disease.
Photo Credit: Ashley Barnas

Parkinson’s disease is a common neurodegenerative disorder that affects the way people move. Often beginning with small tremors in the hand, the disease progresses to affect a person’s gait and balance.

But the majority of what’s known about the brain changes underlying these symptoms stems from magnetic resonance imaging (MRI) studies focusing on the upper extremity.

“Gait and balance disturbance are common in Parkinson's disease and are a major contributor to increased disability and decreased quality of life,” said Roxana Burciu, an assistant professor of kinesiology and applied physiology in the University of Delaware College of Health Sciences. “To design efficient interventions that improve gait and balance, we need to gain a better understanding of how the brain controls the lower extremities.”

Because quality MRI scans depend on stillness of the patient, studying the brain changes in people with Parkinson’s disease who exhibit lower limb symptoms proves challenging. 

Tuesday, April 18, 2023

New embryonic brain circuit discovered

Layer 5 pyramidal neurons in normal mice (left) compared with mice with autism gene knocked-out (right), showing a patch of disorganized cortex.
Microscopic Image Credit: IOB

Researchers have identified a new brain circuit in mouse embryos that develops at an unexpectedly early stage. Their findings may provide new insights into circuit abnormalities in autism.

A research team led by Professor Botond Roska at the Institute of Molecular and Clinical Ophthalmology Basel (IOB) and the University of Basel has studied circuits in the brains of living mouse embryos. They discovered a previously unknown, early active circuit in the cerebral cortex. Genetic disruption of this circuit leads to changes similar to those seen in brains of people with autism. The team reports these findings in the scientific journal "Cell".

Autism has long been associated with faulty circuits in the cortex, which is the part of the brain that governs sensory perception, cognition, and other high-order functions. Most of the cortex is composed of excitatory cells called pyramidal neurons. The research team studied when and how these neurons assemble into the first active circuits in the cortex.

“Understanding the detailed development of cell types and circuits in the cortex can provide important insights into autism and other neurodevelopmental diseases,” says Botond Roska, Director at IOB and professor at the Faculty of Medicine, University of Basel. 

Monday, April 17, 2023

Researchers discover how some brain cells transfer material to neurons in mice

Neuronal accumulation of ribosomal reporter (green) in the brain of adult mice.
Resized Image using AI by SFLORG
Photo Credit Olga Chechneva

Researchers at UC Davis are the first to report how a specific type of brain cells, known as oligodendrocyte-lineage cells, transfer cell material to neurons in the mouse brain. Their work provides evidence of a coordinated nuclear interaction between these cells and neurons. The study was published today in the Journal of Experimental Medicine.

“This novel concept of material transfer to neurons opens new possibilities for understanding brain maturation and finding treatments for neurological conditions, such as Alzheimer’s disease, cerebral palsy, Parkinson’s and Huntington’s disease,” said corresponding author Olga Chechneva. Chechneva is an assistant project scientist at UC Davis Department of Biochemistry and Molecular Medicine and independent principal investigator in the Institute for Pediatric Regenerative Medicine at Shriners Children's Northern California.

Our knowledge about this mechanism is extremely new, and it opens many questions for understanding how neurons work and their biological relevance in many neurological disorders. This is very exciting.”—Olga Chechneva

Wednesday, April 12, 2023

The brain’s support cells may play a key role in OCD

An astrocye from the striatum
Image Credit: Joselyn Soto

A type of cell usually characterized as the brain’s support system appears to play an important role in obsessive-compulsive disorder-related behaviors, according to new UCLA Health research published April 12 in Nature.

The new clue about the brain mechanisms behind OCD, a disorder that is incompletely understood, came as a surprise to researchers. They originally sought to study how neurons interact with star-shaped “helper” cells known as astrocytes, which are known to provide support and protection to neurons.

However, scientists are still trying to understand the apparent role these complex cells play in psychiatric and neurodegenerative diseases.

By studying the proteins expressed by neurons and astrocytes in mice, UCLA researchers found a protein associated with OCD and repetitive behaviors in neurons was also found in astrocytes. The discovery suggests therapeutic strategies targeting astrocytes and neurons may be useful for OCD and potentially other brain disorders.

Sugar molecule in blood can predict Alzheimer’s

Photo Credit: Gerd Altmann

Early diagnosis and treatment of Alzheimer’s disease requires reliable and cost-effective screening methods. Researchers at Karolinska Institutet have now discovered that a type of sugar molecule in blood is associated with the level of tau, a protein that plays a critical role in the development of severe dementia. The study, which is published in Alzheimer's & Dementia, can pave the way for a simple screening procedure able to predict onset ten years in advance.

“The role of glycans, structures made up of sugar molecules, is a relatively unexplored field in dementia research,” says the study’s first author Robin Zhou, medical student and affiliated researcher at the Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet. “We demonstrate in our study that blood levels of glycans are altered early during the development of the disease. This could mean that we’ll be able to predict the risk of Alzheimer’s disease with only a blood test and a memory test.”

In Alzheimer’s disease, the neurons of the brain die, which is thought to be a result of the abnormal accumulation of the proteins amyloid beta and tau. Clinical trials for Alzheimer’s drugs show that treatment should commence early in the pathological process, before too many neurons have died, to reverse the process before it is too late.

The brain’s cannabinoid system protects against addiction

Test participants’ emotional reactions are measured using electrodes that record tension in the small facial muscles. From left: Madeleine Jones and Irene Perini. 
Photo Credit: Thor Balkhed

High levels of the body’s own cannabinoid substances protect against developing addiction in individuals previously exposed to childhood maltreatment, according to a new study. Those who had not developed an addiction following childhood maltreatment seem to process emotion-related social signals better.

 Childhood maltreatment has long been suspected to increase the risk of developing a drug or alcohol addiction later in life. Researchers at Linköping University have previously shown that this risk is three times higher if you have been exposed to childhood maltreatment compared with if you have not, even when accounting for confounds from genetics and other familial factors.

“There’s been a lot of focus on addiction as a disease driven by a search for pleasure effects and euphoria, but for many it has more to do with the drugs’ ability to suppress negative feelings, stress sensitivity, anxiety and low mood. Based on this, we and other researchers have had a theory that if affected in childhood, the function of the brain’s distress systems is altered, and that this may contribute to addiction risk in adulthood,” says Markus Heilig, professor and director of the Center for Social and Affective Neuroscience, CSAN, at Linköping University and consultant at the Psychiatric Clinic of the University Hospital in Linköping.

Friday, March 31, 2023

Scientists Get Closer to Curing Alzheimer's and Parkinson's Diseases

In Russia, the incidence of dementia, Parkinson's disease and Alzheimer's disease will reach the epidemiological threshold of 5%
Image Credit: Gerd Altmann

Prospective compounds for the treatment of neurodegenerative diseases have been synthesized by Russian scientists. The compounds are of great interest for medicinal chemistry, especially for the development of treatments for Alzheimer's and Parkinson's diseases.

According to Timofey Moseev, a member of the group and an employee of the UrFU Chemical Pharmaceutical Center, the researchers managed to test the toxicity of the compounds in vitro on the kidney cells of a healthy human embryo. The researchers used the strategy of nucleophilic hydrogen substitution (a substitution reaction in which the substrate is attacked by a nucleophile, a reagent that carries a pair of unshared electrons). The process does not require metal catalysis, which is particularly important in the production of biologically active compounds, where any metal impurity can significantly distort toxicity and activity data.

To assess the ability of the synthesized molecules to bind to biotargets (proteins that play an important role in a particular disease), the researchers conducted experiments using docking - a molecular modeling technique. Docking allows predicting with a certain probability how a molecule interacts with targeted proteins.

Thursday, March 30, 2023

Machine learning models rank predictive risks for Alzheimer’s disease

Xiaoyi Raymond Gao, PhD Associate Professor
Photo Credit: Courtesy of Ohio State University

Once adults reach age 65, the threshold age for the onset of Alzheimer’s disease, the extent of their genetic risk may outweigh age as a predictor of whether they will develop the fatal brain disorder, a new study suggests. 

The study, published recently in the journal Scientific Reports, is the first to construct machine learning models with genetic risk scores, non-genetic information and electronic health record data from nearly half a million individuals to rank risk factors in order of how strong their association is with eventual development of Alzheimer’s disease.

Researchers used the models to rank predictive risk factors for two populations from the UK Biobank: White individuals aged 40 and older, and a subset of those adults who were 65 or older. 

Results showed that age – which constitutes one-third of total risk by age 85, according to the Alzheimer’s Association – was the biggest risk factor for Alzheimer’s in the entire population, but for the older adults, genetic risk as determined by a polygenic risk score was more predictive. 

“We all know Alzheimer’s disease is a later-onset disease, so we know age is an important risk factor. But when we consider risk only for people age 65 or older, then genetic information captured by a polygenic risk score ranks higher than age,” said lead study author Xiaoyi Raymond Gao, associate professor of ophthalmology and visual sciences and of biomedical informatics in The Ohio State University College of Medicine. “That means it’s really important to consider genetic information when we work on Alzheimer’s disease.” 

Thursday, March 23, 2023

The age of onset of Alzheimer’s disease is likely linked to genetic factors

Nick Cochran, PhD
Photo Credit: Courtesy of HudsonAlpha Institute for Biotechnology

Alzheimer’s disease and other dementias are progressive neurodegenerative diseases that slowly rob affected individuals of their memory, personality, and, eventually, their life. As devastating as these diseases are anywhere, members of a family in Antioquia, Colombia, suffer from a particularly cruel version that strikes them in their mid-40s and results in death within 10 to 12 years. Several decades ago, a neurologist named Francisco Lopera began studying the family because of their high incidence of very early-onset Alzheimer’s disease. Lopera and colleagues discovered that the large Colombian family carries a specific mutation in a gene called presenilin 1 (PSEN1). Having the PSEN1 E280A mutation, as it is called, ensures with certainty that an individual will eventually develop a type of Alzheimer’s disease called autosomal dominant Alzheimer’s disease. 

Lopera and other colleagues have enrolled more than 6,000 individuals from 26 extended families in the study. The dementia field is learning a lot about the cause and progression of Alzheimer’s disease from this family. In return, they received an answer to their decades-long question about why so many family members were suffering from, and ultimately dying from, the devastating disease. HudsonAlpha Institute for Biotechnology Faculty Investigators Nick Cochran, PhD, and his lab were part of a recent study that dove deeper into the individuals’ genomes and identified new potential gene variants linked to Alzheimer’s disease. 

Clues to the cause of chronic gut pain

Professor Stuart Brierley
Photo Credit: Courtesy of Flinders University

New insights into chronic gut pain offer hope for improved treatments for irritable bowel syndrome and anxiety treatment.

A research team led by Flinders University Professor Stuart Brierley, based at the SA Health and Medical Research Institute, with Nobel Laureate Professor David Julius, Professor Holly Ingraham and Dr James Bayrer at the University of California San Francisco, has shown evidence of a specific pathway of cells and nerves linking the gut to the brain that may be responsible for the chronic gut pain.

Chronic gut pain is commonly experienced by 11% of the global population currently living with irritable bowel syndrome (IBS) and associated psychological conditions, including anxiety and depression.

Described in a new article in Nature, the team used genetic and pharmacologic tools in pre-clinical models to manipulate signals between gut epithelial cells and associated nerve fibers to determine how this pathway stimulates chronic gut pain and anxiety.

Wednesday, March 22, 2023

How the brain's 'internal compass' works

New study reveals how the brain makes sense of changing environmental cues
Photo Credit: Albrecht Fietz

Scientists have gained new insights into the part of the brain that gives us a sense of direction, by tracking neural activity with the latest advances in brain imaging techniques. The findings shed light on how the brain orients itself in changing environments – and even the processes that can go wrong with degenerative diseases like dementia, that leave people feeling lost and confused.

“Neuroscience research has witnessed a technology revolution in the last decade allowing us to ask and answer questions that could only be dreamed of just years ago,” says Mark Brandon, an Associate Professor of psychiatry at McGill University and researcher at the Douglas Research Centre, who co-led the research with Zaki Ajabi, a former student at McGill University and now a postdoctoral research fellow at Harvard University.

Reading the brain's internal compass

To understand how visual information impacts the brain’s internal compass, the researchers exposed mice to a disorienting virtual world while recording the brain's neural activity. The team recorded the brain’s internal compass with unprecedented precision using the latest advances in neuronal recording technology.

Tuesday, March 21, 2023

Iron Nanoparticles Neurotoxic Even at Low Doses

Scientists discovered this by studying the brains of rats
Photo Credit: Aleksandr Gusev

Iron oxide nanoparticles, which pollute the air, are toxic to the central nervous system even in low doses. To find out, Ural scientists injected rats intranasally with suspensions containing iron oxide particles and studied functional and structural changes in their brains. The data may help to develop measures to prevent neurodegenerative diseases. The study was conducted at the Ekaterinburg Medical Research Centre of Rospotrebnadzor, and the analysis and synthesis of the data was carried out as part of the Priority 2030 program. The results have been published in the International Journal of Molecular Sciences.

"Many technological processes can produce nanoparticles in the metallurgical industry. Inhalation of nanoparticles is harmful to human health, because even at low concentrations they can penetrate directly into the brain: through the nasal cavity, through the olfactory tract, directly into various brain structures", - says Ilzira Minigalieva, Doctor of Biological Sciences and Head of the UrFU Laboratory "Stochastic transport of nanoparticles in a living organism".

To understand exactly how low doses of iron oxide affect the central nervous system, scientists conducted an experiment on rats and injected each rat intranasally with a suspension containing 0.45 mg of nanoparticles. This amount was not chosen at random because the main purpose of the study was to see if such low doses could have a neurotoxic effect.

Monday, March 13, 2023

Epilepsy could become easier to pinpoint with blood test


Researchers from Lund University in Sweden have discovered higher levels of immune proteins in the blood before and after an epileptic seizure. The possible biomarkers can be identified using a simple blood test. Diagnosing epilepsy is currently resource intensive, and distinguishing it from other conditions can be challenging. Better diagnostic methods as soon as the patient seeks medical care after a suspected seizure is therefore an urgent necessity.

Epilepsy is the collective name for abnormal activity in the brain that causes temporary loss of control of behavior and movement. The condition can be congenital, be caused by a tumor, stroke or infection in the brain and cause very different symptoms depending on which part of the brain the episode begins in or spreads to. Inflammation processes that start as an immune response in the body can also provoke a seizure. That is why researchers started to look for possible biomarkers for epilepsy within the immune system. Previous studies exist, but the results have so far been mixed and difficult to interpret:

“In our study, we have a carefully selected group of participants and we have a lot of background information on each person. We have also taken into account a number of confounding factors that may affect the immune system such as other neurological and immunological illnesses, infections and various psychiatric conditions,” says Christine Ekdahl Clementson.

Wednesday, March 8, 2023

Discovery of T cells’ role in Alzheimer’s, related diseases, suggests new treatment strategy

In Alzheimer’s and related neurodegenerative diseases, the brain protein tau is closely linked to brain damage and cognitive decline. A new study from researchers at Washington University School of Medicine in St. Louis indicates that T cells play a key role in tau-related neurodegeneration, a finding that suggests new treatment strategies for Alzheimer’s and related diseases.
Illustration Credit: Gerd Altmann

Nearly two dozen experimental therapies targeting the immune system are in clinical trials for Alzheimer’s disease, a reflection of the growing recognition that immune processes play a key role in driving the brain damage that leads to confusion, memory loss and other debilitating symptoms.

Many of the immunity-focused Alzheimer’s drugs under development are aimed at microglia, the brain’s resident immune cells, which can injure brain tissue if they’re activated at the wrong time or in the wrong way. A new study from researchers at Washington University School of Medicine in St. Louis indicates that microglia partner with another type of immune cell — T cells — to cause neurodegeneration.

Studying mice with Alzheimer’s-like damage in their brains due to the protein tau, the researchers discovered that microglia attract powerful cell-killing T cells into the brain, and that most of the neurodegeneration could be avoided by blocking the T cells’ entry or activation. The findings, published March 8 in the journal Nature, suggest that targeting T cells is an alternative route to preventing neurodegeneration and treating Alzheimer’s disease and related diseases involving tau, collectively known as tauopathies.

Wednesday, March 1, 2023

How to generate new neurons in the brain

Mitochondria (green) in proliferating (A) and dormant (B) cells. Newly produced neurons (C) (red) in the dentate gyrus with cell nuclei (blue) and a marker for immature neurons (green).
Image Credit: © Knobloch Lab – UNIL

A team of biologists led by UNIGE and UNIL has discovered how to awaken neural stem cells and reactivate them in adult mice.

Some areas of the adult brain contain quiescent, or dormant, neural stem cells that can potentially be reactivated to form new neurons. However, the transition from quiescence to proliferation is still poorly understood. A team led by scientists from the Universities of Geneva (UNIGE) and Lausanne (UNIL) has discovered the importance of cell metabolism in this process and identified how to wake up these neural stem cells and reactivate them. Biologists succeeded in increasing the number of new neurons in the brain of adults and even elderly mice. These results, promising for the treatment of neurodegenerative diseases, are to be discovered in the journal Science Advances.

Stem cells have the unique ability to continuously produce copies of themselves and give rise to differentiated cells with more specialized functions. Neural stem cells (NSCs) are responsible for building the brain during embryonic development, generating all the cells of the central nervous system, including neurons.

AI offers ‘paradigm shift’ in Stanford study of brain injury

Models discovered by the Constitutive Artificial Neural Network outperform existing models for brain tissue.
Image Credit: Ellen Kuhl

By helping researchers choose among thousands of available computational models of mechanical stress on the brain, AI is yielding powerful new insight on traumatic brain injury.

From the gridiron to the battlefield, the study of traumatic brain injury has exploded in recent years. Crucial to understanding brain injury is the ability to model the mechanical forces that compress, stretch, and twist the brain tissue and cause damage that ranges from fleeting to fatal.

Researchers at Stanford University now say they have tapped artificial intelligence to produce a profoundly more accurate model of how deformations translate into stresses in the brain and believe that their approach could reveal a more definitive understanding of when and why concussion sometimes leads to lasting brain damage, and other times not.

“The problem in brain modeling to date is that the brain is not a homogeneous tissue – it’s not the same in every part of the brain. Yet, trauma is often pervasive,” said Ellen Kuhl, professor of mechanical engineering, director of the Living Matter Lab, and senior author of a new study appearing in the journal, Acta Biomaterialia. “The brain is also ultrasoft, much like Jell-O, which makes both testing and modeling physical effects on the brain very challenging.”

Tuesday, February 28, 2023

Blood test for brain cancer may be on horizon, new research finds

Researchers at Penn State College of Medicine have identified a biomarker that can be used in blood tests to diagnose glioblastoma, the most common and deadliest type of brain cancer, and track its progression and guide treatment.
Photo Credit: National Cancer Institute

Glioblastoma (GBM) is the most common and deadliest type of brain cancer with a five-year survival rate of only 5%. Researchers at Penn State College of Medicine have identified a biomarker that can be used in blood tests to diagnose GBM, track its progression and guide treatment. The researchers said that such a non-invasive liquid biopsy for GBM could help patients get the care they need more quickly.

“Patients normally receive imaging, such as MRI or CT scans, to diagnose and track the progression of brain tumors, but it can be difficult for physicians to tell from those scans if the patient is getting better or worse because they don’t provide detail at the cellular or molecular level,” said Vladimir Khristov, graduate and medical student, Penn State. “That is why we need a supplemental diagnostic test to help physicians determine if the tumors are responding to therapy and regressing, or if they are getting worse and need additional treatment.”

Indeed, added Brad Zacharia, associate professor of neurosurgery and of otolaryngology, Penn State, a liquid biopsy for glioblastoma could be of tremendous value to patients suffering from this devastating tumor.

Tuesday, February 21, 2023

New Hope for People Living with Paralysis after Stroke

Video Credit: Carnegie Mellon University

Globally, every fourth adult over the age of 25 will suffer a stroke in their lifetime, and 75% of those people will have lasting deficits in fine motor control. Until now, treating paralysis in the so-called chronic stage, which begins six months after the stroke, has remained ineffective.

Technology developed by Douglas Weber, the Akhtar and Bhutta Professor of Mechanical Engineering and the Neuroscience Institute at Carnegie Mellon University in collaboration with the University of Pittsburgh is offering new hope for people living with impairments that would otherwise be considered permanent. The team discovered that muscles respond directly to electrical stimulation of specific spinal cord regions enabling patients to regain mobility of their arm and hand.  

Spinal cord stimulation technology uses a set of electrodes placed on the surface of the spinal cord to deliver pulses of electricity that activate the nerve cells inside. Research groups around the world have shown that this stimulation can be used to restore movement to the legs, but the complexity of the neural signals controlling the unique dexterity of the human hand and arm adds a significantly higher set of challenges.

Wednesday, February 15, 2023

Novel Optical and fMRI Platform Identifies Brain Regions that Control Large-scale Brain Network

Default mode network examined by fMRI and optical fiber photometry.
Illustration Credit: Shih Lab

Researchers from the UNC School of Medicine, led by Ian Shih, PhD, Professor and Vice Chair of Neurology and Associate Director of the Biomedical Research Imaging Center, revealed the role of the insular cortex in controlling the Default Mode Brain Network.

When we daydream or revisit memories, a large group of regions within our brain “lights up,” or becomes more active. It’s referred to as the Default Mode Network (DMN) because it is more active when the brain is not focused on the outside world.

Numerous brain disorders, including Alzheimer’s, attention-deficit/hyperactivity disorder, and mood disorders, have been linked to issues with the DMN. However, the neurophysiological basis of the DMN is not well understood.

Neuroimaging techniques, like functional magnetic resonance imaging (fMRI), are not able to directly measure neuronal activity. To address this knowledge gap, a research team led by Ian Shih, PhD, professor and vice chair of the Department of Neurology and associate director of the Biomedical Research Imaging Center, has created a novel experimental platform that is able to optically record local neuronal activity during brain-wide fMRI in rodents.

Tuesday, February 14, 2023

The Scent of Discovery

 Gonzalo Otazu, Ph.D., examines the equipment used in the study.
Photo Credit: Steven Gaines

New research from the College of Osteopathic Medicine (NYITCOM) could help explain how the sense of smell is impacted in individuals with autism.

Individuals with autism have an “insistence on sameness,” and often avoid unfamiliar elements, including new smells and foods, which can impact their quality of life. While many studies have focused on the behavioral features of autism, additional research is needed to help explain its sensory aspects.

A study led by Assistant Professor of Biomedical Sciences Gonzalo Otazu, Ph.D., published in the journal Nature Communications, analyzes a mouse model of autism and reports differences in the neurological processes responsible for smell.

Featured Article

Hypoxia is widespread and increasing in the ocean off the Pacific Northwest coast

In late August, OSU's Jack Barth and his colleagues deployed a glider that traversed Oregon’s near-shore waters from Astoria to Coos Bay...

Top Viewed Articles