. Scientific Frontline: Physics
Showing posts with label Physics. Show all posts
Showing posts with label Physics. Show all posts

Wednesday, December 7, 2022

It’s colossal: Creating the world’s largest dilution refrigerator

Colossus will offer 5 cubic meters of space and cool components to around 0.01K.
Photo Credit: Ryan Postel, Fermilab

While the refrigerator in your kitchen gets cold enough to prevent your leftovers from spoiling, dilution refrigerators used for quantum computing research cool devices near the coldest physical temperature possible. Now at the U.S. Department of Energy’s Fermi National Accelerator Laboratory, researchers are building Colossus: It will be the largest, most powerful refrigerator at millikelvin temperatures ever created.

Fermilab is known for its massive experiments, and Colossus will fit right in. Researchers from the Fermilab-hosted Superconducting Quantum Materials and Systems Center need lots of room at cold temperatures to achieve their goal of building a state-of-the-art quantum computer.

Unlike a kitchen refrigerator, which compresses gases called refrigerants to cool food, a dilution refrigerator uses a mixture of helium isotopes to create temperatures close to absolute zero, or zero kelvin: the coldest temperature imaginable in physics, which is physically impossible to reach.

“With the cooling power and volume that Colossus will provide, SQMS researchers will have unprecedented space for our future quantum computer and many other quantum computing and physics experiments,” said Matt Hollister, the lead technical expert on this project. “Colossus is named after the first electronic programmable computer, which was constructed in the 1940s for codebreaking. It was a historic milestone in the history of computing and seemed like an appropriate name for the size of our new refrigerator.”

Big Bang research: ALICE experiment at CERN starts test operation with lead ions

The ALICE detector is being opened for an upgrade.
Photo Credit: Sebastian Scheid, Goethe University

The ALICE experiment at the CERN particle accelerator center in Geneva, Switzerland, investigates the state of matter shortly after the Big Bang, also known as the quark-gluon plasma. By causing lead ions to collide with each other, it is possible to create such a quark-gluon plasma for tiny fractions of a second. Now, for the first time, a test run at CERN for the ALICE experiment has generated collision energies of 5.36 teraelectronvolts per nucleon-nucleon collision – the highest collision energy ever achieved worldwide. Researchers led by Goethe University's Harald Appelshäuser prepared the central ALICE detector for these higher collision rates, which they hope will offer new insights into the origin of the universe.

A few fractions of a second after the Big Bang, all matter in the universe constituted a kind of "elementary particle soup", known as quark-gluon plasma. By allowing heavy ions to collide in particle accelerators, it is possible to create such quark-gluon plasma for an extremely short time. Such lead ion collisions are central to the ALICE experiment at CERN's accelerator center, which aims to study the properties of matter as it existed shortly after the Big Bang.

Unexpected speed-dependent friction

Surprisingly, the friction between the tip of an atomic force microscope and the Moiré superstructures depends on the speed at which the tip is moved across the surface.
Illustration Credit: Department of Physics and Scixel

Due to their low-friction properties, materials consisting of single atomic layers are of great interest for applications where the aim is to reduce friction — such as hard disks or moving components for satellites or space telescopes. One such example is graphene, which consists of a single layer of carbon atoms in a honeycomb arrangement and is being examined with a view to potential use as a lubricating layer. Indeed, previous studies have shown that a graphene ribbon can be moved across a gold surface with almost no friction.

Surprising results with a rough surface

If graphene is applied to a platinum surface, it has a significant impact on the measurable friction forces. Now, physicists from the University of Basel and Tel Aviv University have reported in the journal Nano Letters that, in this instance, the friction depends on the speed at which the tip of an atomic force microscope (*AFM) is moved across the surface. This finding is surprising because friction does not depend on speed according to Coulomb’s law, which applies in the macro world.

Monday, December 5, 2022

Detecting dark matter with quantum computers

Akash Dixit works on a team that uses quantum computers to look for dark matter. Here, Dixit holds a microwave cavity containing a superconducting qubit. The cavity has holes in its side in the same way the screen on a microwave oven door has holes; the holes are simply too small for microwaves to escape.
Photo Credit: Ryan Postel, Fermilab

Dark matter makes up about 27% of the matter and energy budget in the universe, but scientists do not know much about it. They do know that it is cold, meaning that the particles that make up dark matter are slow-moving. It is also difficult to detect dark matter directly because it does not interact with light. However, scientists at the U.S. Department of Energy’s Fermi National Accelerator Laboratory have found a way to look for dark matter using quantum computers.

Aaron Chou, a senior scientist at Fermilab, works on detecting dark matter through quantum science. As part of DOE’s Office of High Energy Physics QuantISED program, he has developed a way to use qubits, the main component of quantum computing systems, to detect single photons produced by dark matter in the presence of a strong magnetic field.

New Quantum Light Source Paves the Way to a Quantum Internet

A molybdenum ditelluride material (blue and yellow lattice) just atoms thick connects telecom-wavelength quantum emitters to optical fibers with minimal loss. The devices generate single photons (red) when triggered by optical signals (green).
Image Credit: Courtesy of Huan Zhao, Center for Integrated Nanotechnologies, Los Alamos National Laboratory

Conventional light sources for fiber-optic telecommunications emit many photons at the same time. Photons are particles of light that move as waves. In today’s telecommunication networks, information is transmitted by modulating the properties of light waves traveling in optical fibers, similar to how radio waves are modulated in AM and FM channels. In quantum communication, however, information is encoded in the phase of a single photon—the photon’s position in the wave in which it travels. This makes it possible to connect quantum sensors in a network spanning great distances and to connect quantum computers together. Researchers recently produced single-photon sources with operating wavelengths compatible with existing fiber communication networks. They did so by placing molybdenum ditelluride semiconductor layers just atoms thick on top of an array of nano-size pillars. This is the first time that researchers have demonstrated this type of tunable light sources suited to use in telecommunications systems.

Measuring times in billionths of a billionth of a second

Explanation by Prof Igor Litvinyuk and Prof Robert Sang. 
Video Credit: Griffith University

How fast do electrons inside a molecule move? Well, it is so fast that it takes them just a few attoseconds (1 as = 10-18 s or one billionth of billionth of a second) to jump from one atom to another. Blink and you missed it – millions of billions of times. So, measuring such ultrafast processes is a daunting task.

Scientists at the Australian Attosecond Science Facility and the Centre for Quantum Dynamics of Griffith University in Brisbane Australia, led by Professor Robert Sang and Professor Igor Litvinyuk have developed a novel interferometric technique capable of measuring time delays with zeptosecond (a trillionth of a billionth of a second) resolution.

They have used this technique to measure the time delay between extreme ultraviolet light pulses emitted by two different isotopes of hydrogen molecules – H2 and D2 – interacting with intense infrared laser pulses.

This delay was found to be less than three attoseconds (one quintillionth of a second long) and is caused by slightly different motions of the lighter and heavier nuclei.

This study has been published in Ultrafast Science, a new Science Partner Journal.

Thursday, December 1, 2022

New Stanford chip-scale laser isolator could transform photonics

From left, Alexander White, Geun Ho Ahn, and Jelena Vučković with the nanoscale isolator.
Photo Credit: Hannah Kleidermacher

Using well-known materials and manufacturing processes, researchers have built an effective, passive, ultrathin laser isolator that opens new research avenues in photonics.

Lasers are transformational devices, but one technical challenge prevents them from being even more so. The light they emit can reflect back into the laser itself and destabilize or even disable it. At real-world scales, this challenge is solved by bulky devices that use magnetism to block harmful reflections. At chip scale, however, where engineers hope lasers will one day transform computer circuitry, effective isolators have proved elusive.

Against that backdrop, researchers at Stanford University say they have created a simple and effective chip-scale isolator that can be laid down in a layer of semiconductor-based material hundreds of times thinner than a sheet of paper.

“Chip-scale isolation is one of the great open challenges in photonics,” said Jelena Vučković, a professor of electrical engineering at Stanford and senior author of the study appearing Dec. 1 in the journal Nature Photonics.

“Every laser needs an isolator to stop back reflections from coming into and destabilizing the laser,” said Alexander White, a doctoral candidate in Vučković’s lab and co-first author of the paper, adding that the device has implications for everyday computing, but could also influence next-generation technologies, like quantum computing.

Wednesday, November 30, 2022

Physicists observe wormhole dynamics using a quantum computer

Artwork depicting a quantum experiment that observes traversable wormhole behavior.
Illustration Credit: inqnet/A. Mueller | Caltech

Scientists have, for the first time, developed a quantum experiment that allows them to study the dynamics, or behavior, of a special kind of theoretical wormhole. The experiment has not created an actual wormhole (a rupture in space and time), rather it allows researchers to probe connections between theoretical wormholes and quantum physics, a prediction of so-called quantum gravity. Quantum gravity refers to a set of theories that seek to connect gravity with quantum physics, two fundamental and well-studied descriptions of nature that appear inherently incompatible with each other.

"We found a quantum system that exhibits key properties of a gravitational wormhole yet is sufficiently small to implement on today's quantum hardware," says Maria Spiropulu, the principal investigator of the U.S. Department of Energy Office of Science research program Quantum Communication Channels for Fundamental Physics (QCCFP) and the Shang-Yi Ch'en Professor of Physics at Caltech. "This work constitutes a step toward a larger program of testing quantum gravity physics using a quantum computer. It does not substitute for direct probes of quantum gravity in the same way as other planned experiments that might probe quantum gravity effects in the future using quantum sensing, but it does offer a powerful testbed to exercise ideas of quantum gravity."

The research will be published December 1 in the journal Nature. The study's first authors are Daniel Jafferis of Harvard University and Alexander Zlokapa (BS '21), a former undergraduate student at Caltech who started on this project for his bachelor's thesis with Spiropulu and has since moved on to graduate school at MIT.

Kibble-Zurek Mechanism for Nonequilibrium Phase Transitions


The Kibble-Zurek (KZ) mechanism, confirmed experimentally only for equilibrium phase transitions, is also applicable for non-equilibrium phase transitions, as is now shown by Tokyo Tech researchers in a landmark study. The KZ mechanism is characterized by the formation of topological defects during continuous phase transition away from the adiabatic limit. This breakthrough finding could open the doors to investigation of the mechanism for other nonequilibrium phase transitions.

Phase transitions describe various phenomena around us, from water turning into ice to magnetic transitions to the superconducting transition where electrical resistance vanishes. In the cases of superconductivity and magnetism, the phase transition is continuous, characterized by "symmetry breaking" that leads to the formation of an ordered state. The ordered state is perfect (defect-free) when this transition is very slow, a regime called the "adiabatic limit". However, for transitions not satisfying this limit, there appear topological defects, whose generation is described by the Kibble-Zurek (KZ) mechanism. Experimentally, the KZ mechanism manifests as a power-law dependence of the defect density on the cooling rate.

Interestingly, the KZ mechanism, while widely studied for phase transitions at thermal equilibrium, has not yet been demonstrated experimentally for nonequilibrium phase transitions. However, a recent simulation study has suggested that the KZ mechanism can be applied to dynamical ordering transitions between disordered and ordered flow states, a phenomenon that can be experimentally tested in superconducting vortex systems.

Tuesday, November 29, 2022

New quantum computing feat is a modern twist on a 150-year-old thought experiment


UNSW Sydney research demonstrates a 20x improvement in resetting a quantum bit to its ‘0’ state, using a modern version of the ‘Maxwell’s demon’.

A team of quantum engineers at UNSW Sydney has developed a method to reset a quantum computer – that is, to prepare a quantum bit in the ‘0’ state – with very high confidence, as needed for reliable quantum computations. The method is surprisingly simple: it is related to the old concept of ‘Maxwell’s demon’, an omniscient being that can separate a gas into hot and cold by watching the speed of the individual molecules.

“Here we used a much more modern ‘demon’ – a fast digital voltmeter – to watch the temperature of an electron drawn at random from a warm pool of electrons. In doing so, we made it much colder than the pool it came from, and this corresponds to a high certainty of it being in the ‘0’ computational state,” says Professor Andrea Morello of UNSW, who led the team.

“Quantum computers are only useful if they can reach the final result with very low probability of errors. And one can have near-perfect quantum operations, but if the calculation started from the wrong code, the final result will be wrong too. Our digital ‘Maxwell’s demon’ gives us a 20x improvement in how accurately we can set the start of the computation.”

Monday, November 28, 2022

Astrophysicists Hunt for Second-Closest Supermassive Black Hole

Illustration Credit: Scott Anttila Anttler

Two astrophysicists at the Center for Astrophysics | Harvard & Smithsonian have suggested a way to observe what could be the second-closest supermassive black hole to Earth: a behemoth 3 million times the mass of the Sun, hosted by the dwarf galaxy Leo I.

The supermassive black hole, labeled Leo I*, was first proposed by an independent team of astronomers in late 2021. The team noticed stars picking up speed as they approached the center of the galaxy — evidence for a black hole — but directly imaging emission from the black hole was not possible.

Now, CfA astrophysicists Fabio Pacucci and Avi Loeb suggest a new way to verify the supermassive black hole's existence; their work is described in a study published today in The Astrophysical Journal Letters.

"Black holes are very elusive objects, and sometimes they enjoy playing hide-and-seek with us," says Fabio Pacucci, lead author of the ApJ Letters study. "Rays of light cannot escape their event horizons, but the environment around them can be extremely bright — if enough material falls into their gravitational well. But if a black hole is not accreting mass, instead, it emits no light and becomes impossible to find with our telescopes."

New device can control light at unprecedented speeds

Scientists have developed a programmable, wireless spatial light modulator that can manipulate light at the wavelength scale with orders-of-magnitude faster response than existing devices.
Illustration Credit: Sampson Wilcox

In a scene from “Star Wars: Episode IV — A New Hope,” R2D2 projects a three-dimensional hologram of Princess Leia making a desperate plea for help. That scene, filmed more than 45 years ago, involved a bit of movie magic — even today, we don’t have the technology to create such realistic and dynamic holograms.

Generating a freestanding 3D hologram would require extremely precise and fast control of light beyond the capabilities of existing technologies, which are based on liquid crystals or micromirrors.

An international group of researchers, led by a team at MIT, spent more than four years tackling this problem of high-speed optical beam forming. They have now demonstrated a programmable, wireless device that can control light, such as by focusing a beam in a specific direction or manipulating the light’s intensity, and do it orders of magnitude more quickly than commercial devices.

They also pioneered a fabrication process that ensures the device quality remains near-perfect when it is manufactured at scale. This would make their device more feasible to implement in real-world settings.

Organizing nanoparticles into pinwheel shapes offers new twist on engineered materials

Jiahui Li, left, Shan Zhou and professor Qian Chen show off an electron micrograph image of their new pinwheel lattice structure developed to help engineers build new materials with unique optical, magnetic, electronic and catalytic properties. 
Photo Credit: Fred Zwicky

Researchers have developed a new strategy to help build materials with unique optical, magnetic, electronic and catalytic properties. These pinwheel-shaped structures self-assemble from nanoparticles and exhibit a characteristic called chirality – one of nature’s strategies to build complexity into structures at all scales, from molecules to galaxies.

Nature is rich with examples of chirality – DNA, organic molecules and even human hands. In general, chirality can be seen in objects that can have more than one spatial arrangement. For example, chirality in molecules might present itself as two strings of atoms that have the same composition, but each having a “twist” to the left or right in their spatial orientations, the researchers said.

The new study, led by Qian Chen, a professor of materials science and engineering at the University of Illinois Urbana-Champaign, and Nicholas A. Kotov, a professor chemical engineering at the University of Michigan, extends chirality into lattices assembled from nanoparticle building blocks to create new metamaterials – materials designed to interact with their surroundings to perform specific functions.

The study is published in the journal Nature.

Researchers build long-sought nanoparticle structure, opening door to special properties

Theoretical physicist Alex Travesset uses computer models, equations and scientific figures to explain how nanostructures assemble.
Photo Credit: Christopher Gannon/Iowa State University.

Alex Travesset doesn’t have a shiny research lab filled with the latest instruments that probe new nanomaterials and measure their special properties.

No, his theoretical work explaining what’s happening inside those new nanomaterials is all about computer models, equations and figures. And so, when he joins a project, the Iowa State University professor of physics and astronomy who’s also affiliated with the U.S. Department of Energy’s Ames National Laboratory might contribute many dense pages showing how nanoparticles assemble.

Case in point: Travesset’s “Chiral Tetrahedra” calculations and illustrations that are part of a research paper just published by the journal Nature. Those calculations show how controlled evaporation of a solution containing tetrahedron-shaped gold nanoparticles on a solid silicon substrate can assemble into a pinwheel-shaped, two-layered structure.

It turns out the nanostructure is chiral, meaning it’s not identical to its mirror image. (The classic example is a hand and its reflection. The thumbs end up on opposite sides and so one hand can’t be superimposed on the other. That’s chirality.)

Researchers take first step towards controlling photosynthesis using mirrors

The researchers used ultrafast laser spectroscopy
Photo Credit: Pavel Chabera

With the help of mirrors, placed only a few hundred nanometers apart, a research team has managed to use light more efficiently. The finding could eventually be useful for controlling solar energy conversion during photosynthesis, or other reactions driven by light. For example, one application could be converting carbon dioxide into fuel.

The sunlight that hits Earth for one hour is almost equivalent to the total energy consumption of mankind for an entire year. At the same time, our global emissions of carbon dioxide are increasing. Harnessing the sun's energy to capture greenhouse gas and then convert it into fuel is a hot research field.

A research team at Lund University in Sweden was previously able to show that with ultrafast laser spectroscopy, and the help of advanced materials, it would be possible to reduce the levels of greenhouse gases in the atmosphere in the long term. In their latest study in Nature Communications, the team has made new progress when it comes to taking advantage of light.

Saturday, November 26, 2022

Rice lab’s catalyst could be key for hydrogen economy


Rice University researchers have engineered a key light-activated nanomaterial for the hydrogen economy. Using only inexpensive raw materials, a team from Rice’s Laboratory for Nanophotonics, Syzygy Plasmonics Inc. and Princeton University’s Andlinger Center for Energy and the Environment created a scalable catalyst that needs only the power of light to convert ammonia into clean-burning hydrogen fuel.

The research is published in the journal Science.

The research follows government and industry investment to create infrastructure and markets for carbon-free liquid ammonia fuel that will not contribute to greenhouse warming. Liquid ammonia is easy to transport and packs a lot of energy, with one nitrogen and three hydrogen atoms per molecule. The new catalyst breaks those molecules into hydrogen gas, a clean-burning fuel, and nitrogen gas, the largest component of Earth’s atmosphere. And unlike traditional catalysts, it doesn’t require heat. Instead, it harvests energy from light, either sunlight or energy-stingy LEDs.

The pace of chemical reactions typically increases with temperature, and chemical producers have capitalized on this for more than a century by applying heat on an industrial scale. The burning of fossil fuels to raise the temperature of large reaction vessels by hundreds or thousands of degrees results in an enormous carbon footprint. Chemical producers also spend billions of dollars each year on thermocatalysts — materials that don’t react but further speed reactions under intense heating.

Friday, November 25, 2022

The whole in a part: Synchronizing chaos through a narrow slice of spectrum

Conceptual overview of the coupling scheme between a master and a slave chaotic oscillator via a band-pass filter, and the resulting complex interdependence between their activities.
Credit: Tokyo Institute of Technology

Engineers at the Tokyo Institute of Technology (Tokyo Tech) have uncovered some intricate effects arising when chaotic systems, which typically generate broad spectra, are coupled by conveying only a narrow range of frequencies from one to another. The synchronization of chaotic oscillators, such as electronic circuits, continues to attract considerable fascination due to the richness of the complex behaviors that can emerge. Recently, hypothetical applications in distributed sensing have been envisaged, however, wireless couplings are only practical over narrow frequency intervals. The proposed research shows that, even under such constraints, chaos synchronization can occur and give rise to phenomena that could one day be leveraged to realize useful operations over ensembles of distant nodes.

The abstract notion that the whole can be found in each part of something has for long fascinated thinkers engaged in all walks of philosophy and experimental science: from Immanuel Kant on the essence of time to David Bohm on the notion of order, and from the self-similarity of fractal structures to the defining properties of holograms. It has, however, remained understandably extraneous to electronic engineering, which strives to develop ever more specialized and efficient circuits exchanging signals that possess highly controlled characteristics. By contrast, across the most diverse complex systems in nature, such as the brain, the generation of activity having features that present themselves similarly over different temporal scales, or frequencies, is nearly a ubiquitous observation.

Thursday, November 24, 2022

Physicist strikes gold, solving 50-year lightning mystery

Photo Credit: Bogdan Radu

The chances of being struck by lightning are less than one in a million, but those odds shortened considerably this month when more than 4.2 million lightning strikes were recorded in every Australian state and territory over the weekend of 12-13 November.

When you consider that each lighting strike travels at more than 320,000 kilometers per hour, that’s a massive amount of electricity.

Ever wondered about lightning? For the past 50 years, scientists around the world have debated why lightning zig-zags and how it is connected to the thunder cloud above.

There hasn’t been a definitive explanation until now, with a University of South Australia plasma physicist publishing a landmark paper that solves both mysteries.

Dr John Lowke, former CSIRO scientist and now UniSA Adjunct Research Professor, says the physics of lightning has stumped the best scientific minds for decades.

“There are a few textbooks on lightning, but none have explained how the zig-zags (called steps) form, why the electrically conducting column connecting the steps with the cloud remains dark, and how lightning can travel over kilometers,” Dr Lowke says.

Wednesday, November 23, 2022

Spin correlation between paired electrons demonstrated

Electrons leave a superconductor only as pairs with opposite spins. If both electron paths are blocked for the same type of spin by parallel spin filters, paired electrons from the superconductor are blocked and the currents decrease.
Image Credit: University of Basel, Department of Physics/Scixel

Physicists at the University of Basel have experimentally demonstrated for the first time that there is a negative correlation between the two spins of an entangled pair of electrons from a superconductor. For their study, the researchers used spin filters made of nanomagnets and quantum dots, as they report in the scientific journal Nature.

The entanglement between two particles is among those phenomena in quantum physics that are hard to reconcile with everyday experiences. If entangled, certain properties of the two particles are closely linked, even when far apart. Albert Einstein described entanglement as a “spooky action at a distance”. Research on entanglement between light particles (photons) was awarded this year's Nobel Prize in Physics.

Two electrons can be entangled as well – for example in their spins. In a superconductor, the electrons form so-called Cooper pairs responsible for the lossless electrical currents and in which the individual spins are entangled.

For several years, researchers at the Swiss Nanoscience Institute and the Department of Physics at the University of Basel have been able to extract electron pairs from a superconductor and spatially separate the two electrons. This is achieved by means of two quantum dots – nanoelectronic structures connected in parallel, each of which only allows single electrons to pass.

Physicist Errando helps NASA solve black hole jet mystery

Illustration Credit: NASA courtesy of IXPE team

Some of the brightest objects in the sky are called blazars. They consist of a supermassive black hole feeding off material swirling around it in a disk, which can create two powerful jets perpendicular to the disk on each side. A blazar is especially bright because one of its powerful jets of high-speed particles points straight at Earth. For decades, scientists have wondered: How do particles in these jets get accelerated to such high energies?

NASA’s Imaging X-Ray Polarimetry Explorer, or IXPE, has helped astronomers get closer to an answer. In a new study in the journal Nature, authored by a large international collaboration, astronomers find that the best explanation for the particle acceleration is a shock wave within the jet.

Manel Errando, an assistant professor of physics in Arts & Sciences at Washington University in St. Louis, and a faculty fellow of the McDonnell Center for the Space Sciences, is part of the team that analyzed the IXPE data.

Featured Article

Autism and ADHD are linked to disturbed gut flora very early in life

The researchers have found links between the gut flora in babies first year of life and future diagnoses. Photo Credit:  Cheryl Holt Disturb...

Top Viewed Articles