In the last decade, physicists have attempted to explore the inner workings of these quantum materials with cold atom experiments, whereby the behavior of electrons is simulated with neutral atoms, light beams and ultra-cold temperatures. These 2D models provide an analog system that allows experimentalists to see the interactions at more scrutable length and time scales – microns and milliseconds, rather than angstroms and femtoseconds – bringing them ever closer to understanding the materials’ unusual electrical functions.
Now, Cornell researchers led by Erich Mueller, professor of physics in the College of Arts and Sciences, have found this experimental model doesn’t capture what’s really happening inside strange metals at all.
Their paper, “Transport in the Two-Dimensional Fermi-Hubbard Model: Lessons from Weak Coupling,” published Oct. 25 in Physical Review B. The lead author is doctoral student Thomas Kiely.
“These cold atom experiments are a really awesome way to try and learn about this strange metal behavior, this crazy unusual resistivity, which we believe is the key to understanding how to make higher-temperature superconductors and all sorts of other things,” Mueller said. “We found there’s actually a simple explanation for what happens in this experiment.”