. Scientific Frontline: A portable ultrasound sensor may enable earlier detection of breast cancer

Monday, February 2, 2026

A portable ultrasound sensor may enable earlier detection of breast cancer

The probe, which is a little smaller than a deck of cards, contains an ultrasound array arranged in the shape of an empty square, a configuration that allows the array to take 3D images of the tissue below.
Photo Credit: Conformable Decoders Lab at the MIT Media Lab
(CC BY-NC-ND 4.0)

Scientific Frontline: "At a Glance" Summary

  • Main Discovery: MIT researchers developed a fully portable, miniaturized ultrasound system capable of generating real-time 3D images for the early detection of breast cancer.
  • Methodology: The device employs a "chirped data acquisition" (cDAQ) architecture with a probe featuring an empty-square transducer array; it rests gently on the skin to capture volumetric data without the tissue compression required by traditional probes.
  • Key Data: The processing motherboard costs approximately $300 to manufacture, operates on a standard 5V power supply, and enables the probe (smaller than a deck of cards) to image up to 15 centimeters deep into tissue.
  • Significance: This low-power technology addresses the detection gap for "interval cancers"—which account for 20% to 30% of breast cancer cases—by enabling frequent, accessible screening in rural or low-resource settings without the need for heavy hospital equipment.
  • Future Application: The team plans to miniaturize the electronics to the size of a fingernail for smartphone integration, develop AI algorithms to guide user placement, and launch a commercial wearable version for at-home monitoring.
  • Branch of Science: Biomedical Engineering and Medical Imaging.
  • Additional Detail: In initial tests on a 71-year-old subject, the system successfully identified cysts and reconstructed full 3D images without the geometric distortion common in conventional compression-based ultrasound.

The new system consists of a small ultrasound probe, on left, attached to an acquisition and processing module that is a little larger than a smartphone.
Photo Credit: Conformable Decoders Lab at the MIT Media Lab
(CC BY-NC-ND 4.0)

For people who are at high risk of developing breast cancer, frequent screenings with ultrasound can help detect tumors early. MIT researchers have now developed a miniaturized ultrasound system that could make it easier for breast ultrasounds to be performed more often, either at home or at a doctor’s office.

The new system consists of a small ultrasound probe attached to an acquisition and processing module that is a little larger than a smartphone. This system can be used on the go when connected to a laptop computer to reconstruct and view wide-angle 3D images in real-time.

“Everything is more compact, and that can make it easier to be used in rural areas or for people who may have barriers to this kind of technology,” says Canan Dagdeviren, an associate professor of media arts and sciences at MIT and the senior author of the study.

With this system, she says, more tumors could potentially be detected earlier, which increases the chances of successful treatment.

Frequent monitoring

While many breast tumors are detected through routine mammograms, which use X-rays, tumors can develop in between yearly mammograms. These tumors, known as interval cancers, account for 20 to 30 percent of all breast cancer cases, and they tend to be more aggressive than those found during routine scans.

Detecting these tumors early is critical: When breast cancer is diagnosed in the earliest stages, the survival rate is nearly 100 percent. However, for tumors detected in later stages, that rate drops to around 25 percent.

For some individuals, more frequent ultrasound scanning in addition to regular mammograms could help to boost the number of tumors that are detected early. Currently, ultrasound is usually done only as a follow-up if a mammogram reveals any areas of concern. Ultrasound machines used for this purpose are large and expensive, and they require highly trained technicians to use them.

“You need skilled ultrasound technicians to use those machines, which is a major obstacle to getting ultrasound access to rural communities, or to developing countries where there aren’t as many skilled radiologists,” Viswanath says.

By creating ultrasound systems that are portable and easier to use, the MIT team hopes to make frequent ultrasound scanning accessible to many more people.

In 2023, Dagdeviren and her colleagues developed an array of ultrasound transducers that were incorporated into a flexible patch that can be attached to a bra, allowing the wearer to move an ultrasound tracker along the patch and image the breast tissue from different angles.

Those 2D images could be combined to generate a 3D representation of the tissue, but there could be small gaps in coverage, making it possible that small abnormalities could be missed. Also, that array of transducers had to be connected to a traditional, costly, refrigerator-sized processing machine to view the images.

In their new study, the researchers set out to develop a modified ultrasound array that would be fully portable and could create a 3D image of the entire breast by scanning just two or three locations.

The new system they developed is a chirped data acquisition system (cDAQ) that consists of an ultrasound probe and a motherboard that processes the data. The probe, which is a little smaller than a deck of cards, contains an ultrasound array arranged in the shape of an empty square, a configuration that allows the array to take 3D images of the tissue below.

This data is processed by the motherboard, which is a little bit larger than a smartphone and costs only about $300 to make. All of the electronics used in the motherboard are commercially available. To view the images, the motherboard can be connected to a laptop computer, so the entire system is portable.

“Traditional 3D ultrasound systems require power expensive and bulky electronics, which limits their use to high-end hospitals and clinics,” Chandrakasan says. “By redesigning the system to be ultra-sparse and energy-efficient, this powerful diagnostic tool can be moved out of the imaging suite and into a wearable form factor that is accessible for patients everywhere.”

This system also uses much less power than a traditional ultrasound machine, so it can be powered with a 5V DC supply (a battery or an AC/DC adapter used to plug in small electronic devices such as modems or portable speakers).

“Ultrasound imaging has long been confined to hospitals,” says Nayeem. “To move ultrasound beyond the hospital setting, we reengineered the entire architecture, introducing a new ultrasound fabrication process, to make the technology both scalable and practical.”

Earlier diagnosis

The researchers tested the new system on one human subject, a 71-year-old woman with a history of breast cysts. They found that the system could accurately image the cysts and created a 3D image of the tissue, with no gaps.

The system can image as deep as 15 centimeters into the tissue, and it can image the entire breast from two or three locations. And, because the ultrasound device sits on top of the skin without having to be pressed into the tissue like a typical ultrasound probe, the images are not distorted.

“With our technology, you simply place it gently on top of the tissue and it can visualize the cysts in their original location and with their original sizes,” Dagdeviren says.

The research team is now conducting a larger clinical trial at the MIT Center for Clinical and Translational Research and at MGH.

The researchers are also working on an even smaller version of the data processing system, which will be about the size of a fingernail. They hope to connect this to a smartphone that could be used to visualize the images, making the entire system smaller and easier to use. They also plan to develop a smartphone app that would use an AI algorithm to help guide the patient to the best location to place the ultrasound probe.

While the current version of the device could be readily adapted for use in a doctor’s office, the researchers hope that the future, a smaller version can be incorporated into a wearable sensor that could be used at home by people at high risk for developing breast cancer.

Dagdeviren is now working on launching a company to help commercialize the technology, with assistance from an MIT HEALS Deshpande Momentum Grant, the Martin Trust Center for MIT Entrepreneurship, and the MIT Media Lab WHx Women’s Health Innovation Fund.

Funding: The research was funded by a National Science Foundation CAREER Award, a 3M Non-Tenured Faculty Award, the Lyda Hill Foundation, and the MIT Media Lab Consortium.

Published in journal: Advanced Healthcare Materials

TitleReal-Time 3D Ultrasound Imaging with an Ultra-Sparse, Low Power Architecture

Authors: Colin Marcus, Md Osman Goni Nayeem, Aastha Shah, Jason Hou, Shrihari Viswanath, Maya Eusebio, David Sadat, Anantha P. Chandrakasan, Tolga Ozmen, and Canan Dagdeviren

Source/CreditMassachusetts Institute of Technology | Anne Trafton

Reference Number: beng020226_01

Privacy Policy | Terms of Service | Contact Us