. Scientific Frontline: Chemistry
Showing posts with label Chemistry. Show all posts
Showing posts with label Chemistry. Show all posts

Thursday, November 10, 2022

Injections for diabetes, cancer could become unnecessary

Young woman injecting insulin
Photo Credit: Pavel Danilyuk

Researchers at UC Riverside are paving the way for diabetes and cancer patients to forget needles and injections, and instead take pills to manage their conditions.

Some drugs for these diseases dissolve in water, so transporting them through the intestines, which receive what we drink and eat, is not feasible. As a result, these drugs cannot be administered by mouth. However, UCR scientists have created a chemical “tag” that can be added to these drugs, allowing them to enter blood circulation via the intestines.

The details of how they found the tag, and demonstrations of its effectiveness, are described in a new Journal of the American Chemical Society paper.

The tag is composed of a small peptide, which is like a protein fragment. “Because they are relatively small molecules, you can chemically attach them to drugs, or other molecules of interest, and use them to deliver those drugs orally,” said Min Xue, UCR chemistry professor who led the research.

Xue’s laboratory was testing something unrelated when the researchers observed these peptides making their way into cells.

Growing pure nanotubes is a stretch, but possible

There are dozens of varieties of nanotubes, each with a characteristic diameter and structural twist, or chiral angle. Carbon nanotubes are grown on catalytic particles using batch production methods that produce the entire gamut of chiral varieties, but Rice University scientists have come up with a new strategy for making batches with a single, desired chirality. Their theory shows chiral varieties can be selected for production when catalytic particles are drawn away at specific speeds by localized feedstock supply. The illustration depicts this and an analogous process 19th-century scientists used to describe the evolution of giraffes’ long necks due to the gradual selection of abilities to reach progressively higher for food.
Credit: Illustrations by Ksenia Bets/Rice University

Like a giraffe stretching for leaves on a tall tree, making carbon nanotubes reach for food as they grow may lead to a long-sought breakthrough.

Materials theorists Boris Yakobson and Ksenia Bets at Rice University’s George R. Brown School of Engineering show how putting constraints on growing nanotubes could facilitate a “holy grail” of growing batches with a single desired chirality.

Their paper in Science Advances describes a strategy by which constraining the carbon feedstock in a furnace would help control the “kite” growth of nanotubes. In this method, the nanotube begins to form at the metal catalyst on a substrate, but lifts the catalyst as it grows, resembling a kite on a string.

Carbon nanotube walls are basically graphene, its hexagonal lattice of atoms rolled into a tube. Chirality refers to how the hexagons are angled within the lattice, between 0 and 30 degrees. That determines whether the nanotubes are metallic or semiconductors. The ability to grow long nanotubes in a single chirality could, for instance, enable the manufacture of highly conductive nanotube fibers or semiconductor channels of transistors.

Gadolinium Improved Conductivity of Hydrogen Energy Material Twenty-fold

Schematic and photograph of layered perovskites with gadolinium.
Illustration Credit: et al. journal Materials

Employees of the Institute of High Temperature Electrochemistry of the Urals Branch of the Russian Academy of Sciences and the Institute of Hydrogen Energy of Ural Federal University have created a new electrolyte material for hydrogen power. It is based on layered perovskites modified with rare-earth gadolinium, Indicator reports. Layered perovskites have good conductivity, and they can also be used to create systems that will convert the energy of chemical reactions into electricity. The development of the Ural scientists will make it possible to expand green energy technologies and thereby reduce carbon emissions. The research was supported by the Russian Science Foundation. The results of the work were published in the journal Materials.

Classical ABO3 perovskite (where A and B are two different elements and O is oxygen) is a network of octahedrons connected with each other by all vertices, and each oxygen atom is included in this network. In layered perovskites AA'BO4 octahedrons are connected in layers separated from each other by layers with a cubic structure of rock salt. It is more "flexible" than the classical perovskite, which may open up additional possibilities for its improvement.

The authors decided to modify the layered perovskites BaLaInO4 (Ba - barium, La - lanthanum, In - indium, O - oxygen) by adding atoms of the rare-earth gadolinium, which can also increase the conductivity of materials. In this case, this effect is due to the fact that the system originally had rare-earth ions - lanthanum - and the addition of their "relative" gadolinium led to more repulsion of octahedrons in the crystal lattice. As a result, the space for the transport of charged particles expanded.

Wednesday, November 9, 2022

Previously unseen processes reveal path to better rechargeable battery performance

Materials science and engineering postdoctoral researcher Wenxiang Chen is the first author of a new study that applies imaging techniques common in ceramics and metallurgy to rechargeable ion battery research. 
Photo by Fred Zwicky

To design better rechargeable ion batteries, engineers and chemists from the University of Illinois Urbana-Champaign collaborated to combine a powerful new electron microscopy technique and data mining to visually pinpoint areas of chemical and physical alteration within ion batteries.

A study led by materials science and engineering professors Qian Chen and Jian-Min Zuo is the first to map out altered domains inside rechargeable ion batteries at the nanoscale – a 10-fold or more increase in resolution over current X-ray and optical methods.

The findings are published in the journal Nature Materials.

The team said previous efforts to understand the working and failure mechanisms of battery materials have primarily focused on the chemical effect of recharging cycles, namely the changes in the chemical composition of the battery electrodes.

A new electron microscopy technique, called four-dimensional scanning transmission electron microscopy, allows the team to use a highly focused probe to collect images of the inner workings of batteries.

Thursday, November 3, 2022

Plant Hormones to Help Prevent Striga Invasion

 A field of the crop sorghum infected with Striga.
Photo Credit: 2022 KAUST; Muhammad Jamil; Jian You Wang.

As part of a multipronged approach to prevent infestations by the parasitic plant Striga hermonthica, researchers are unravelling the role of plant hormones, known as strigolactones (SLs).

Cereal crops release SLs that regulate plant architecture and play a role in other processes related to plant development and stress response. The SLs released by plant roots attract mycorrhizal fungi, which provide plant nutrients. But strigolactones also induce germination and invasion by the parasitic plant Striga, with severe impacts on agricultural production, particularly on cereal yields in Africa.

In an important discovery, the team has recently shown that canonical SLs do not affect plant architecture in rice.

The researchers employed CRISPR/Cas9 technology to generate rice lines without canonical SLs and compared them to wild-type plants. The shoot and root phenotypes did not differ significantly between the mutants and the wild type, indicating that canonical SLs are not major regulators of rice architecture.

“Knowing which SLs regulate plant architecture and other functions, such as establishing symbiosis with beneficial mycorrhizal fungi or enabling invasion by root parasitic plants, will allow us to optimize and engineer one trait without affecting others,” explains Jian You Wang, a postdoc in Al-Babili’s lab.

The research showed that canonical SLs do contribute to symbiosis with mycorrhizal fungi and play a major role in stimulating seed germination in root parasitic weeds.

Tuesday, November 1, 2022

A new method for studying ribosome function

Illustration showing the principle of native chemical ligation approach developed by Syroegin, et al. Addition of the cysteine amino acid (red) to tRNA (blue, top left) allows for the tRNA to fuse to a peptide (yellow, lower left). The resulting ribosome structure (middle) and the captured electron density maps for the peptidyl-tRNA inside the ribosome (right) were obtained by X-ray crystallography in the UIC experiments.
Image Credit: Syroegin, et al.

Inside tiny cellular machines called ribosomes, chains of genetic material called messenger RNAs (mRNAs) are matched with the corresponding transfer RNAs (tRNAs) to create sequences of amino acids that exit the ribosome as proteins. Unfinished proteins are called nascent chainsm and they are left attached to the ribosome.

Scientists know that some of these nascent chains can regulate the activity of the ribosome and that the nascent chains can sometimes interfere with antibiotics — many of which work by targeting bacterial ribosome activity. Scientists do not know why this happens, mainly because it is hard to visualize what the ribosome-peptide-drug interactions look like while the unfinished proteins are still tethered to the ribosome.

Now, scientists at the University of Illinois Chicago are the first to report a method for stable attachment of peptides to tRNAs, which has allowed them to gain new fundamental insights into ribosome function by determining the atomic-level structures of ribosomes and the shapes that these peptides take inside the ribosome.

Durable, Inexpensive Catalyst Reduces Carbon Footprint of Ammonia Production


To reduce the energy requirements of the Haber-Bosch process, which converts nitrogen and hydrogen to ammonia, researchers from Tokyo Tech have developed a metal nitride catalyst containing an active metal (Ni) on a lanthanum nitride support that is stable in presence of moisture. Since the catalyst doesn't contain ruthenium, it presents an inexpensive option for reducing the carbon footprint of ammonia production.

The Haber-Bosch process, which is commonly used to synthesize ammonia (NH3)–the foundation for synthetic nitrogen fertilizers–by combining hydrogen (H2) and nitrogen (N2) over catalysts at high pressures and temperatures, is one of the most important scientific discoveries that has helped improve crop yields and increase food production globally.

However, the process requires high fossil fuel energy inputs due to its requirements of high temperatures and pressure. Hydrogen used for this process is produced from natural gas (mainly methane). This hydrogen-producing process is energy-consuming and accompanies huge emissions of carbon dioxide. To overcome these issues, various catalysts have been developed to allow the reaction to proceed under milder conditions using hydrogen produced by water electrolysis via renewable energy. Among them are nitride-based catalysts that contain active metal nanoparticles like nickel and cobalt (Ni, Co) loaded on lanthanum nitride (LaN) supports. In these catalysts, both the support and the active metal are involved in the production of NH3. The active metal splits the H2 while the LaN support contains nitrogen vacancies and nitrogen atoms in its crystal structure that absorb and activate nitrogen (N2). While these catalysts are inexpensive (since they avoid using ruthenium, which is costly), their catalytic performance is degraded in the presence of moisture, with the LaN support transforming into lanthanum hydroxide (La(OH)3).

Monday, October 31, 2022

New catalyst can turn smelly hydrogen sulfide into a cash cow

An illustration of the light-powered, one-step remediation process for hydrogen sulfide gas made possible by a gold photocatalyst created at Rice University.
Image Credit: Halas Group/Rice University

Hydrogen sulfide gas has the unmistakable aroma of rotten eggs. It often emanates from sewers, stockyards and landfills, but it is particularly problematic for refineries, petrochemical plants and other industries, which make thousands of tons of the noxious gas each year as a byproduct of processes that remove sulfur from petroleum, natural gas, coal and other products.

In a published study in the American Chemical Society’s high-impact journal ACS Energy Letters, Rice engineer, physicist and chemist Naomi Halas and collaborators describe a method that uses gold nanoparticles to convert hydrogen sulfide into high-demand hydrogen gas and sulfur in a single step. Better yet, the one-step process gets all its energy from light. Study co-authors include Rice’s Peter Nordlander, Princeton University’s Emily Carter and Syzygy Plasmonics’ Hossein Robatjazi.

“Hydrogen sulfide emissions can result in hefty fines for industry, but remediation is also very expensive,” said Halas, a nanophotonics pioneer whose lab has spent years developing commercially viable light-activated nanocatalysts. “The phrase ‘game-changer’ is overused, but in this case, it applies. Implementing plasmonic photocatalysis should be far less expensive than traditional remediation, and it has the added potential of transforming a costly burden into an increasingly valuable commodity.”

Reprogramming of immune cells shown to fight off melanoma

Illustration showing how miniature artificial protocells loaded with anti-microRNA-223 cargo can reprogram cancer-associated macrophages in larval and adult zebrafish leading them to be more pro-inflammatory and thus able to drive melanoma shrinkage
Image Credit: Paco Lopez Cuevas

A new way of reprogramming our immune cells to shrink or kill off cancer cells has been shown to work in the otherwise hard to treat and devastating skin cancer, melanoma. The University of Bristol-led discovery, published in Advanced Science today [31 October], demonstrates a new way to clear early stage pre-cancerous and even late-stage tumor cells.

Using miniature artificial capsules called protocells designed to deploy reprogramming cargoes that are taken up by inflammatory cells (white blood cells), the scientists show they were able to transform these cells into a state that makes them more effective at slowing down the growth and killing of melanoma cells. They showed that this was possible for both animal and human immune cells.

The study is the first to test the capacity of a protocell to deliver cargoes for reprogramming immune cells and offers a promising novel target for the development of cancer immunotherapies.

Paul Martin, Professor of Cell Biology in the School of Biochemistry at the University of Bristol and one of the study's lead authors explained what happens when our immune system comes into contact with cancer cells: "Our immune cells have a surveillance capacity which enables them to detect pre-cancerous cells arising at any tissue site in the body. However, when immune cells encounter cancer cells, they are often subverted by the cancer cells and instead tend to nourish them and encourage cancer progression. We wanted to test whether it might be possible to reprogram our immune system to kill these cells rather than nurture them."

New Material for Perovskite Solar Cells Proposed in Russia

Scientists have proposed a new type of material for transporting electrons in perovskite solar cells.
 Photo Credit: Vladimir Petrov

Experts from the Ural Federal University and the Institute of Organic Synthesis of the Ural Branch of the Russian Academy of Sciences, together with other Russian scientists, have proposed a new type of material for one of the solar cell cells. The discovered compounds will significantly reduce the cost of solar cell production. An article with the results of the study was published in the New Journal of Chemistry.

Perovskite solar cells (PSCs) are a promising alternative to the familiar silicon cells, providing the same amount of energy with 180 times less material thickness. Their production technology is much simpler and cheaper than that of silicon cells. The problem with PSCs is their lack of stability. One of the most effective solutions today, as explained by the experts, is the selection of new materials that ensure the transport of the charge carriers after it is obtained in the perovskite layer itself.

The scientific team of the Ural Federal University and the Institute of Organic Synthesis of the Ural Branch of the Russian Academy of Sciences proposed a new type of material for transporting electrons in the PSCs, which has a number of advantages. According to the authors, with the new material they managed to achieve solar energy conversion efficiency of 12%, which is comparable with the average indicators of market analogues.

Thursday, October 27, 2022

NUS researchers devise revolutionary technique to generate hydrogen more efficiently from water

An NUS team led by Assoc Prof Xue Jun Min (center) has found that light can trigger a new mechanism in a catalytic material used extensively in water electrolysis (held up by Mr. Zhong Haoyin), where water is broken down into hydrogen and oxygen. The result is a more energy-efficient method of obtaining hydrogen. Dr Vincent Lee Wee Siang (right) is a member of the research team.
 Credit: National University of Singapore

The team’s discovery that light can trigger a brand new electro-catalytic mechanism of water electrolysis could improve affordability of hydrogen as source of clean energy

A team of researchers from the National University of Singapore (NUS) have made a serendipitous scientific discovery that could potentially revolutionize the way water is broken down to release hydrogen gas - an element crucial to many industrial processes.

The team, led by Associate Professor Xue Jun Min, Dr Wang Xiaopeng and Dr Vincent Lee Wee Siang from the Department of Materials Science and Engineering under the NUS College of Design and Engineering (NUS CDE), found that light can trigger a new mechanism in a catalytic material used extensively in water electrolysis, where water is broken down into hydrogen and oxygen. The result is a more energy-efficient method of obtaining hydrogen.

This breakthrough was achieved in collaboration with Dr Xi Shibo from the Institute of Sustainability for Chemicals, Energy and Environment under the Agency for Science, Technology and Research (ASTAR); Dr Yu Zhigen from the Institute of High-Performance Computing under ASTAR; and Dr Wang Hao from the Department of Mechanical Engineering under the NUS CDE.

Monday, October 24, 2022

Gestational Exposure to Flame Retardant Alters Brain Development in Rats


A new study from North Carolina State University shows that exposure in utero to the flame retardant FireMaster® 550 (FM 550), or to its individual brominated (BFR) or organophosphate ester (OPFR) components, resulted in altered brain development in newborn rats. The effects – most notably evidence of mitochondrial disruption and dysregulated choline and triglyceride levels in brain tissue – were greater in male offspring than in females. The work adds to the body of evidence that both OPFRs and BFRs can be neurotoxic.

FM 550 is a flame-retardant mixture first identified a decade ago. It was developed to replace PBDEs, a class of fire retardants being phased out due to safety concerns.

“While some new flame-retardant mixtures still contain BFRs, the OPFRs are a popular substitute for PBDEs, since it is believed that OPFRs don’t accumulate in the body and thus cannot be as harmful,” says Heather Patisaul, associate dean for research in NC State’s College of Sciences and corresponding author of the study. “Specifically, it was thought that OPFRs wouldn’t impact acetylcholinesterase – a key neurotransmitter. But it looks as though OPFRs still impact choline signaling and are just as bad if not worse than PBDEs for the developing brain.”

Patisaul and her colleagues performed transcriptomic and lipidomic studies on the prefrontal cortexes of newborn rats whose mothers had been exposed to FM550, or to BFR or OPFR elements individually, during gestation.

Scientists Created a Material Promising for Improving Brightness of Screens

One of the assembled organic LEDs based on push-pull systems.
Photo credit: Ruslan Gadirov / TSU

Scientists at the Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, and Ural Federal University have developed, synthesized, and studied a series of new fluorophores - push-pull systems (compounds with pronounced electron-donor and electron-acceptor parts) based on cyanopyrazine. Ural chemists in cooperation with colleagues from Tomsk State University showed that the presence of a cyano group in the substance significantly increases the efficiency of organic light emitting diodes (OLEDs) based on it. This opens the prospect of creating new materials to enhance the brightness of displays of smartphones, computers and televisions. An article describing the research and its results was published in the journal Dyes and Pigments.

In previous research work, chemists demonstrated that one of the most promising compounds as an acceptor (attracting electrons) part in push-pull systems is the pyrazine ring (another name is 1,4-diazine), a compound of nitrogen, hydrogen and carbon that has a significant electron-accepting effect.

A revolutionary method to observe cell transport

Nanobodies (grey) with magnetic probes (red stars) target the desired membrane protein.
Credit: Bordignon, Enrica

Membrane proteins are key targets for many drugs. They are located between the outside and inside of our cells. Some of them, called ‘‘transporters’’, move certain substances in and out of the cellular environment. Yet, extracting and storing them for observation is particularly complex. A team from the University of Geneva (UNIGE), in collaboration with the University of Zurich (UZH), has developed an innovative method to study their structure in their native environment: the cell. The technique is based on electron spin resonance spectroscopy. These results, just published in the journal Science Advances, may facilitate future development of new drugs.

In living organisms, each cell is surrounded by a cell membrane (or ‘‘cytoplasmic membrane’’). This membrane consists of a double layer of lipids. It separates the contents of the cell from its direct environment and regulates the substances that can enter or leave the cell. The proteins attached to this membrane are called ‘‘membrane proteins’’.

Located at the interface between the outside and inside of the cell, they carry various substances across the membrane - into or out of the cell - and play a crucial role in cell signaling, i.e. in the communication system of cells that allows them to coordinate their metabolic processes, development and organization. As a result, membrane proteins represent more than 60% of current drug targets.

Friday, October 21, 2022

Ural Scientists Created Nanoparticle Growth Technology

The new material is suitable for solar cells, biosensors, and other systems working on quantum principles.
Photo credit: Vladimir Petrov

Physicists at Ural Federal University and their colleagues from the Institute of Electrophysics, Ural Branch of the Russian Academy of Sciences, and the Institute of Ion Plasma and Laser Technologies, Academy of Sciences, have developed a technology for growing nonspherical nanoparticles that are synthesized by ion implantation. With the new technique, it is possible to grow nanoparticles of different shapes and thus obtain the necessary properties and control them. The technology is applicable to different metals, both noble metals such as gold, silver, platinum, and "ordinary", the scientists assure. A description of the technology and the results of the first experiments - copper implantation in ceramics - are presented in the Journal of Physics and Chemistry of Solids.

"By changing the shape of nanoparticles from spherical to non-spherical, we were able to increase the range of optical absorption. This, in turn, is the basis for further converting the absorbed energy into electricity and heat. As a result, we can get more functional sensors and increase their sensitivity range. If such nanoparticles are built into lasers, their power will increase. If we talk about sensors, their sensitivity will increase. As for sensors, their response time will change. This is all due to the peculiarity of plasmon resonance, which leads to the fact that around the nanoparticles there is an amplified electric field," explains study co-author Arseny Kiryakov, Associate Professor at the Department of Physical Techniques and Devices for Quality Control at UrFU.

Thursday, October 20, 2022

New Chemosensors Can Detect Heavy Metals in the Body and Environment

According to Grigory Zyryanov, industrial partners, including foreign ones, are interested in the developments.
Photo credit: Anna Marinovich

Ural scientists are developing chemosensors for the diagnosis and therapy of various diseases. These are compounds that change their luminescent properties upon external exposure or contact with organic cells. They can be used to find and suppress cancer cells, diagnose cardiovascular diseases, and determine the level of sugar or drugs in the blood. One of the new developments of scientists from the UrFU is chemosensors for controlling the content of metals in the blood, since an overdose of metals can be dangerous for the body. Grigory Zyryanov, professor at the Department of Organic and Biomolecular Chemistry at Ural Federal University, spoke about this on the air of Komsomolskaya Pravda radio.

"One of our activities is the creation of chemosensors for the detection of zinc cations in biological fluids, including blood. Zinc is involved in many physiological processes in the body; it is necessary for normal growth and stabilization of cell membranes. In some cases, such as colds, taking zinc supplements can help boost the body's immune response and speed recovery. However, it is necessary to control zinc levels, since zinc overdose is toxic for the body," explains Grigory Zyryanov.

Wednesday, October 19, 2022

Converting Carbon Dioxide to Minerals Underground

Mineralizing carbon dioxide underground is a potential carbon storage method.
Credit: Illustration by Cortland Johnson | Pacific Northwest National Laboratory

A new high-profile scientific review article in Nature Reviews Chemistry discusses how carbon dioxide (CO2) converts from a gas to a solid in ultrathin films of water on underground rock surfaces. These solid minerals, known as carbonates, are both stable and common.

“As global temperatures increase, so does the urgency to find ways to store carbon,” said Pacific Northwest National Laboratory (PNNL) Lab Fellow and coauthor Kevin Rosso. “By taking a critical look at our current understanding of carbon mineralization processes, we can find the essential-to-solve gaps for the next decade of work.”

Mineralization underground represents one way to keep CO2 locked away, unable to escape back into the air. But researchers first need to know how it happens before they can predict and control carbonate formation in realistic systems.

“Mitigating human emissions requires fundamental understanding how to store carbon,” said PNNL chemist Quin Miller, co-lead author of the scientific review featured on the journal cover. “There is a pressing need to integrate simulations, theory, and experiments to explore mineral carbonation problems.”

Monday, October 17, 2022

Developing Self-Complementary Macrocycles with Ingenious Molecules


Virus capsids can be formed through the self-complementary assembly of a single class of protein molecules. However, mimicking nature by making higher-ordered structures from artificial molecules has proven difficult to achieve. A new assembly method developed by Tokyo Tech researchers can produce stable and controllable supramolecular structures, from hexamers to cuboctahedrons that include 6 and 108 monomer units, respectively, opening doors to metal-free supramolecular assemblies.

Some biological molecules with efficient noncovalent bonding sites can use their bonding properties to create well-defined assemblies from a single class of molecules–i.e., they assemble with each other. These molecules, which are frequently seen in nature, are referred to as "self-complementary assemblies." For instance, the p24 protein hexamer, which is part of the capsid of the HIV (human immunodeficiency virus), is composed of six protein subunits which complementarily self -assemble using many hydrogen bonds. This phenomenon provides well-designed molecules can form higher-ordered assemblies without the metal ions which are commonly used as "joints" between monomer molecules. Indeed, many self-complementary assemblies have been reported on the basis of intrinsic hydrogen bonds, π-interactions, and coordination bonds.

Ural Scientists Developed a Drug to Combat Post-Covidal Complications

According to the scientists, the university and the Ural Branch of the Russian Academy of Sciences are developing world-class materials.
Photo credit: TASS-Ural Press Center, Vladislav Burnashev

Scientists from the Ural Federal University and the Postovsky Institute of Organic Synthesis have developed a drug to combat post-covidal complications, namely, the formation of blood clots. The drug blocks the release of clot-forming compounds caused by coronavirus infection. As the scientists point out, this is a world-class achievement, as new classes of compounds capable of combating the effects of coronavirus have been discovered. Representatives of the Ural Branch of the Russian Academy of Sciences talked about this, as well as about other developments aimed at ensuring the scientific and technological sovereignty of Russia, at a press conference at TASS.

"We develop unique things. This is important to note, because now the concept of import substitution is pushed to the background, and we are talking about the scientific and technological sovereignty of the country. The fact is that import substitution implies reproduction, copying of foreign technologies. We are catching up beforehand. Scientific and technological sovereignty implies independence from external conditions and supremacy in the development of industrial samples and new materials which are superior to foreign analogues in their characteristics. Therefore, it is certain that the Ural scientists successfully solve the task of ensuring scientific and technological progress," emphasizes Victor Rudenko, Academician and Chairman of the Ural Branch of the Russian Academy of Sciences.

Wednesday, October 12, 2022

Sustainable kerosene: accelerate production on an industrial scale

In the international project CARE-O-SENE, researchers are developing tailor-made Fischer-Tropsch catalysts for the production of sustainable kerosene.
Photo credit: Tiziana Carambia

The Federal Ministry of Education and Research (BMBF) is funding the international research project CARE-O-SENE (Catalyst Research for Sustainable Kerosene) with 30 million euros. It is intended to improve the production of sustainable kerosene on an industrial scale. For this purpose, the network partners, including the Karlsruhe Institute of Technology (KIT), are developing tailor-made catalysts to further develop the Fischer-Tropsch synthesis (FTS) established in fuel production for the use of renewable energy sources.

With a share of more than 80 percent, fossil fuels are still by far the most important raw material for fuels, heating and the chemical industry (source: International Energy Agency, IEA). Sustainable fuels are based on green hydrogen and carbon dioxide - and should make a significant contribution to decarbonizing sectors such as aviation, in which fossil fuels are particularly difficult to replace. In the CARE-O-SENE project, seven South African and German project partners are therefore researching next-generation Fischer-Tropsch catalysts.

Featured Article

Autism and ADHD are linked to disturbed gut flora very early in life

The researchers have found links between the gut flora in babies first year of life and future diagnoses. Photo Credit:  Cheryl Holt Disturb...

Top Viewed Articles