. Scientific Frontline: Nanotechnology
Showing posts with label Nanotechnology. Show all posts
Showing posts with label Nanotechnology. Show all posts

Thursday, May 11, 2023

With new experimental method, researchers probe spin structure in 2D materials for first time

In the study, researchers describe what they believe to be the first measurement showing direct interaction between electrons spinning in a 2D material and photons coming from microwave radiation.
 Graphic Credit: Jia Li, an assistant professor of physics at Brown.

For two decades, physicists have tried to directly manipulate the spin of electrons in 2D materials like graphene. Doing so could spark key advances in the burgeoning world of 2D electronics, a field where super-fast, small and flexible electronic devices carry out computations based on quantum mechanics.

Standing in the way is that the typical way in which scientists measure the spin of electrons — an essential behavior that gives everything in the physical universe its structure — usually doesn’t work in 2D materials. This makes it incredibly difficult to fully understand the materials and propel forward technological advances based on them. But a team of scientists led by Brown University researchers believe they now have a way around this longstanding challenge. They describe their solution in a new study published in Nature Physics.

In the study, the team — which also include scientists from the Center for Integrated Nanotechnologies at Sandia National Laboratories, and the University of Innsbruck — describe what they believe to be the first measurement showing direct interaction between electrons spinning in a 2D material and photons coming from microwave radiation. Called a coupling, the absorption of microwave photons by electrons establishes a novel experimental technique for directly studying the properties of how electrons spin in these 2D quantum materials — one that could serve as a foundation for developing computational and communicational technologies based on those materials, according to the researchers.

NUS scientists develop a novel light-field sensor for 3D scene construction with unprecedented angular resolution

Prof Liu Xiaogang (right) and Dr Yi Luying from the NUS Department of Chemistry capturing a 3D image of a model using the light-field sensor.
Photo Credit: Courtesy of National University of Singapore

Color-encoding technique for light-field imaging has potential applications in fields such as autonomous driving, virtual reality and biological imaging

A research team from the National University of Singapore (NUS) Faculty of Science, led by Professor Liu Xiaogang from the Department of Chemistry, has developed a 3D imaging sensor that has an extremely high angular resolution, which is the capacity of an optical instrument to distinguish points of an object separated by a small angular distance, of 0.0018o. This innovative sensor operates on a unique angle-to-color conversion principle, allowing it to detect 3D light fields across the X-ray to visible light spectrum.  

A light field encompasses the combined intensity and direction of light rays, which the human eyes can process to precisely detect the spatial relationship between objects. Traditional light sensing technologies, however, are less effective. Most cameras, for instance, can only produce two-dimensional images, which is adequate for regular photography but insufficient for more advanced applications, including virtual reality, self-driving cars, and biological imaging. These applications require precise 3D scene construction of a particular space.

Monday, May 1, 2023

Researchers develop technique for rapid detection of neurodegenerative diseases like Parkinson’s and CWD

Illustration Credit: Sang-Hyun Oh Research Group, University of Minnesota

University of Minnesota researchers have developed a groundbreaking new diagnostic technique that will allow for faster and more accurate detection of neurodegenerative diseases. The method will likely open a door for earlier treatment and mitigation of various diseases that affect humans, such as Alzheimer's and Parkinson's, and similar diseases that affect animals, such as chronic wasting disease (CWD).

Their new study is published in Nano Letters.

“This research mainly focuses on chronic wasting disease in deer, but ultimately our goal is to expand the technology for a broad spectrum of neurodegenerative diseases, Alzheimer’s and Parkinson’s being the two main targets,” said Sang-Hyun Oh, senior co-author of the paper and a professor in the College of Science and Engineering. “Our vision is to develop ultra-sensitive, powerful diagnostic techniques for a variety of neurodegenerative diseases so that we can detect biomarkers early on, perhaps allowing more time for the deployment of therapeutic agents that can slow down the disease progression. We want to help improve the lives of millions of people affected by neurodegenerative diseases.”

Tuesday, April 25, 2023

A simple paper test could offer early cancer diagnosis

MIT engineers have designed a new nanoparticle sensor that can enable cancer diagnosis with a simple urine test. The nanoparticles (blue) carry DNA barcodes (zigzag lines) that can be cleaved by cancer-associated proteases in the body (pac-man shapes). Once cleaved, the DNA barcodes can be detected in a urine sample.
Illustration Credit: Courtesy of the researchers. Edited by MIT News

MIT engineers have designed a new nanoparticle sensor that could enable early diagnosis of cancer with a simple urine test. The sensors, which can detect many different cancerous proteins, could also be used to distinguish the type of a tumor or how it is responding to treatment.

The nanoparticles are designed so that when they encounter a tumor, they shed short sequences of DNA that are excreted in the urine. Analyzing these DNA “barcodes” can reveal distinguishing features of a particular patient’s tumor. The researchers designed their test so that it can be performed using a strip of paper, similar to an at-home Covid test, which they hope could make it affordable and accessible to as many patients as possible.

“We are trying to innovate in a context of making technology available to low- and middle-resource settings. Putting this diagnostic on paper is part of our goal of democratizing diagnostics and creating inexpensive technologies that can give you a fast answer at the point of care,” says Sangeeta Bhatia, the John and Dorothy Wilson Professor of Health Sciences and Technology and of Electrical Engineering and Computer Science at MIT and a member of MIT’s Koch Institute for Integrative Cancer Research and Institute for Medical Engineering and Science.

Monday, April 24, 2023

Researchers discover new self-assembled crystal structures

 Conceptual image showcasing several interaction potential shapes, represented by stems, that will lead to the self-assembly of new low-coordinated crystal structures, represented by flowers. 
Image Credit: Hillary Pan

Using a targeted computational approach, researchers in the Department of Materials Science and Engineering at Cornell have found more than 20 new self-assembled crystal structures, none of which had been observed previously.

The research, published in the journal ACS Nano under the title “Targeted Discovery of Low-Coordinated Crystal Structures via Tunable Particle Interactions,” is authored by Ph.D. student Hillary Pan and her advisor Julia Dshemuchadse, assistant professor of materials science and engineering.

“Essentially we were trying to figure out what kinds of new crystal structure configurations we can self-assemble in simulation,” Pan said. “The most exciting thing was that we found new structures that weren’t previously listed in any crystal structure database; these particles are actually assembling into something that nobody had ever seen before.”

The team conducted a targeted search for previously unknown low-coordinated assemblies within a vast parameter space spanned by particles interacting via isotropic pair potentials, the paper states. “Low-coordinated structures have anisotropic local environments, meaning that the geometries are highly directional, so it’s incredible that we’re able to see such a variety of these types of structures using purely non-directional interactions,” said Pan.

Scientists Develop Effective Silicon Surface Processing Technology

The technology will be useful in the creation of solar cells, as well as in biomedicine, chemistry, and IT.
 Photo Credit: Ilya Safarov

A team of scientists from Ekaterinburg (UrFU), Moscow, and St. Petersburg has developed a new technology for processing silicon wafers. It is a hybrid chemical and laser texturing, in which the wafer is treated with a femtosecond laser beam after chemical exposure to various reagents. Pre-chemical etching allows for five times faster laser treatment and improves light absorption over a broad spectral range. The technology will be useful in making solar cells. It could also be used in biomedicine for highly sensitive sensors for DNA analysis and detection of viruses and bacteria. It is also used in chemistry and in information and communication technologies. A description of the new technology has been published in the journal Materials.

"Currently, the formation of light-absorbing micro-reliefs on the surface of silicon wafers is achieved by a chemical process that is relatively inexpensive and used on an industrial scale. However, after chemical treatment, the wafers have a significant reflection coefficient, which reduces the efficiency of solar cells. An alternative method is laser treatment of the wafers. It reduces the reflection, but requires a significant amount of time using a femtosecond laser. Our proposed laser treatment after chemical etching reduces the processing time by a factor of five. At the same time, the reflection coefficient of wafers processed by the hybrid method is 7-10% lower than after chemical treatment," says Vladimir Shur, Director of the Ural Multiple Access Center "Modern Nanotechnologies" of the UrFU.

Wednesday, April 19, 2023

New blue light technique could enable advances in understanding nanoscale technologies

Photo Credit: Courtesy of Brown University

With a new microscopy technique that uses blue light to measure electrons in semiconductors and other nanoscale materials, a team of Brown University researchers is opening a new realm of possibilities in the study of these critical components, which can help power devices like mobile phones and laptops.

The findings are a first in nanoscale imaging and provide a workaround to a longstanding problem that has greatly limited the study of key phenomena in a wide variety of materials that could one day lead to more energy-efficient semiconductors and electronics. The work was published in Light: Science & Applications.

“There is a lot of interest these days in studying materials with nanoscale resolution using optics,” said Daniel Mittleman, a professor in Brown’s School of Engineering and author of the paper describing the work. “As the wavelength gets shorter, this becomes a lot harder to implement. As a result, nobody had ever done it with blue light until now.”

Wednesday, April 12, 2023

Nanotubes as an optical stopwatch for the detection of messenger substances

Bochum research team: Linda Sistemich and Sebastian Kruß
Photo Credit: © RUB, Kramer

Carbon nanotubes not only lighten in the presence of dopamine, but also longer. The lighting duration can serve as a new measurement for the detection of messenger substances.

An interdisciplinary research team from Bochum and Duisburg has found a new way to detect the important messenger substance dopamine in the brain. The researchers used carbon nanotubes for this. In previous studies, the team led by Prof. Dr. Sebastian Kruß has already shown that the tubes light up in the presence of dopamine. Now the interdisciplinary group showed that the duration of the lighting also changes. "It is the first time that an important messenger like dopamine has been detected in this way," says Sebastian Kruß. “We are convinced that this will open up a new platform that will also enable better detection of other human messenger substances such as serotonin. "The work was a cooperation between Kruß’ two working groups in physical chemistry at the Ruhr University Bochum and the Fraunhofer Institute for Microelectronic Circuits and Systems (IMS).

The results are described by a team led by Linda Sistemich and Sebastian Kruß from the Ruhr University Bochum together with colleagues from the IMS and the University of Duisburg-Essen in the journal Angewandte Chemie - International Edition, published online on 9. March 2023.

Thursday, March 30, 2023

Watch nanoparticles grow into crystals

Liquid-phase TEM video of layer-by-layer growth of a crystal with smooth surface from gold concave nanocubes. Surface particles on the growing crystal are tracked (center positions overlaid with yellow dots).

For the first time ever, researchers have watched the mesmerizing process of nanoparticles self-assembling into solid materials. In the stunning new videos, particles rain down, tumble along stairsteps and slide around before finally snapping into place to form a crystal’s signature stacked layers.

Led by Northwestern University and the University of Illinois, Urbana-Champaign, the research team says these new insights could be used to design new materials, including thin films for electronic applications.

The research was published today (March 30) in the journal Nature Nanotechnology

Described by the researchers as an “experimental tour de force,” the study used a newly optimized form of liquid-phase transmission electron microscopy (TEM) to gain unprecedented insights into the self-assembly process. Before this work, researchers used microscopy to watch micron-sized colloids — which are 10 to 100 times larger than nanoparticles — self-assemble into crystals. They also have used X-ray crystallography or electron microscopy to visualize single layers of atoms in a crystalline lattice. But they were unable to watch atoms individually move into place.

“We know that atoms use a similar scheme to assemble into crystals, but we have never seen the actual growth process,” said Northwestern’s Erik Luijten, who led the theoretical and computational work to explain the observations. “Now we see it coming together right in front of our eyes. By viewing nanoparticles, we are watching particles that are larger than atoms, but smaller than colloids. So, we have completed the whole spectrum of length scales. We are filling in the missing length.”

Ultrasmall swirling magnetic vortices detected in iron-containing material

Simulation capturing the different swirling textures of skyrmions and merons observed in ferromagnet thin film.
Image Credit: University of Edinburgh/based on microscopy images collected by Argonne on samples prepared at MagLab

Microelectronics forms the foundation of much modern technology today, including smartphones, laptops and even supercomputers. It is based on the ability to allow and stop the flow of electrons through a material. Spin electronics, or spintronics, is a spinoff. It is based on the spin of electrons, and the fact that the electron spin along with the electric charge creates a magnetic field.

“This property could be exploited for building blocks in future computer memory storage, brain-like and other novel computing systems, and high-efficiency microelectronics,” said Charudatta Phatak, group leader in the Materials Science division at the U.S. Department of Energy’s (DOE) Argonne National Laboratory.

A team including researchers at Argonne and the National High Magnetic Field Laboratory (MagLab) discovered surprising properties in a magnetic material of iron, germanium and tellurium. This material is in the form of a thin sheet that is only a few to 10 atoms in thickness. It is called a 2D ferromagnet.

The team discovered that two kinds of magnetic fields can coexist in this ultrathin material. Scientists call them merons and skyrmions. They are like miniature swirling storm systems dotting the flat landscape of the ferromagnet. But they differ in their size and swirling behavior.

Thursday, March 23, 2023

New wood-based technology removes 80 percent of dye pollutants in wastewater

Researchers at Chalmers have developed a new biobased material, a form of powder based on cellulose nanocrystals to purify water from pollutants, including textile dyes. When the polluted water passes through the filter with cellulose powder, the pollutants are absorbed, and the sunlight entering the treatment system causes them to break down quickly and efficiently. Laboratory tests have shown that at least 80 percent of the dye pollutants are removed with the new method and material, and the researchers see good opportunities to further increase the degree of purification.
Illustration Credit: David Ljungberg | Chalmers University of Technology

Clean water is a prerequisite for our health and living environment, but far from a given for everyone. According to the WHO, there are currently over two billion people living with limited or no access to clean water.

This global challenge is at the center of a research group at Chalmers University of Technology, which has developed a method to easily remove pollutants from water. The group, led by Gunnar Westman, Associate Professor of Organic Chemistry, focuses on new uses for cellulose and wood-based products and is part of the Wallenberg Wood Science Center.

The researchers have built up solid knowledge about cellulose nanocrystals* – and this is where the key to water purification lies. These tiny nanoparticles have an outstanding adsorption capacity, which the researchers have now found a way to utilize.

“We have taken a unique holistic approach to these cellulose nanocrystals, examining their properties and potential applications. We have now created a biobased material, a form of cellulose powder with excellent purification properties that we can adapt and modify depending on the types of pollutants to be removed,” says Gunnar Westman.

Tuesday, March 21, 2023

Purifying water with the power of the sun


A Notre Dame researcher’s invention could improve access to clean water for some of the world’s most vulnerable people.

 “Today, the big challenges are information technology and energy,” says László Forró, the Aurora and Thomas Marquez Professor of Physics of Complex Quantum Matter in the University of Notre Dame's Department of Physics and Astronomy. “But tomorrow, the big challenge will be water.”

The World Health Organization reports that today nearly 2 billion people regularly consume contaminated water. It estimates that by 2025 half of the world’s population could be facing water scarcity. Many of those affected are in rural areas that lack the infrastructure required to run modern water purifiers, while many others are in areas affected by war, natural disasters or pollution. There is a greater need than ever for innovative ways to extend water access to those living without power, sanitation and transportation networks.

Recently, Forró's lab developed just such a solution. They created a water purifier, described in the Nature partner journal Clean Water, that is powered by a resource nearly all of the world’s most vulnerable people have access to: the sun.

Monday, March 20, 2023

Ultrafast beam-steering breakthrough at Sandia Labs

As a red beam of light is reflected in an arch, Prasad Iyer, right, and Igal Brener demonstrate optical hardware used for beam steering experiments at Sandia National Laboratories’ Center for Integrated Nanotechnologies.
Photo Credit: Craig Fritz

In a major breakthrough in the fields of nanophotonics and ultrafast optics, a Sandia National Laboratories research team has demonstrated the ability to dynamically steer light pulses from conventional, so-called incoherent light sources.

This ability to control light using a semiconductor device could allow low-power, relatively inexpensive sources like LEDs or flashlight bulbs to replace more powerful laser beams in new technologies such as holograms, remote sensing, self-driving cars and high-speed communication.

“What we’ve done is show that steering a beam of incoherent light can be done,” said Prasad Iyer, Sandia scientist and lead author of the research, which was reported in the current issue of the journal Nature Photonics

Incoherent light is emitted by many common sources, such as an old-fashioned incandescent light bulb or an LED bulb. This light is called incoherent since the photons are emitted with different wavelengths and in a random fashion. A beam of light from a laser, however, does not spread and diffuse because the photons have the same frequency and phase and is thus called coherent light.

Wednesday, March 15, 2023

For the first time, controlling the degree of twist in nanostructured particles

An array of different growth conditions, spanning from left-handed twists made with only left-handed cystine to flat pancakes made with a 50-50 mix to right-handed twists made only with right-handed cystine. The ability to control the degree of twist in a curling, nanostructured material could be a useful new tool in chemistry and machine vision.
Image Credit: Prashant Kumar, Kotov Lab, University of Michigan.

Being able to decide not only whether a micron-scale particle twists but also how much could open new avenues for machine vision and more

Micron-sized “bow ties,” self-assembled from nanoparticles, form a variety of different curling shapes that can be precisely controlled, a research team led by the University of Michigan has shown.

The development opens the way for easily producing materials that interact with twisted light, providing new tools for machine vision and producing medicines.

While biology is full of twisted structures like DNA, known as chiral structures, the degree of twist is locked in—trying to change it breaks the structure. Now, researchers can engineer the degree of twist.

Such materials could enable robots to accurately navigate complex human environments. Twisted structures would encode information in the shapes of the light waves that reflect from the surface, rather than in the 2D arrangement of symbols that comprise most human-read signs. This would take advantage of an aspect of light that humans can barely sense, known as polarization. The twisted nanostructures preferentially reflect certain kinds of circularly polarized light, a shape that twists as it moves through space.

Wednesday, March 8, 2023

New kind of transistor could shrink communications devices on smartphones

Electrical & Computer Engineering research scientist Ding Wang and graduate student Minming He from Prof. Zetian Mi’s group, University of Michigan, are working on the epitaxy and fabrication of high electron mobility transistors (HEMTs) based on a new nitride material, ScAlN, which has been demonstrated recently as a promising high-k and ferroelectric gate dielectric that can foster new functionalities and boost device performances.”
Photo Credit: Marcin Szczepanski/Lead Multimedia Storyteller, Michigan Engineering

Integrating a new ferroelectric semiconductor, it paves the way for single amplifiers that can do the work of multiple conventional amplifiers, among other possibilities

One month after announcing a ferroelectric semiconductor at the nanoscale thinness required for modern computing components, a team at the University of Michigan has demonstrated a reconfigurable transistor using that material.

The study is a featured article in Applied Physics Letters.

“By realizing this new type of transistor, it opens up the possibility for integrating multifunctional devices, such as reconfigurable transistors, filters and resonators, on the same platform—all while operating at very high frequency and high power,” said Zetian Mi, U-M professor of electrical and computer engineering who led the research, “That’s a game changer for many applications.”

Tuesday, March 7, 2023

Nanotube sensors are capable of detecting and distinguishing gibberellin plant hormones

The continued study of gibberellins could lead to further breakthroughs in agricultural science and have implications for food security.
Photo Credit: Courtesy of SMART.

Researchers from the Disruptive and Sustainable Technologies for Agricultural Precision (DiSTAP) interdisciplinary research group of the Singapore-MIT Alliance for Research and Technology (SMART), MIT’s research enterprise in Singapore, and their collaborators from Temasek Life Sciences Laboratory have developed the first-ever nanosensor that can detect and distinguish gibberellins (GAs), a class of hormones in plants that are important for growth. The novel nanosensors are nondestructive, unlike conventional collection methods, and have been successfully tested in living plants. Applied in the field for early-stage plant stress monitoring, the sensors could prove transformative for agriculture and plant biotechnology, giving farmers interested in high-tech precision agriculture and crop management a valuable tool to optimize yield.

The researchers designed near-infrared fluorescent carbon nanotube sensors that are capable of detecting and distinguishing two plant hormones, GA3 and GA4. Belonging to a class of plant hormones known as gibberellins, GA3 and GA4 are diterpenoid phytohormones produced by plants that play an important role in modulating diverse processes involved in plant growth and development. GAs are thought to have played a role in the driving forces behind the “green revolution” of the 1960s, which was in turn credited with averting famine and saving the lives of many worldwide. The continued study of gibberellins could lead to further breakthroughs in agricultural science and have implications for food security.

New Fluorescent Sensors Make it Possible to Detect the Concentration of Mercury in Water

New fluorophores selectively and with high sensitivity recognize mercury ions.
Photo Credit: Anna Marinovich

Scientists from the UrFU, together with Italian and Bulgarian colleagues, synthesized new heterocyclic fluorophores - four types of carboxamides of 2-aryl-1,2,3-triazoles. Their photophysical properties have been investigated under different conditions - solvents and their binary mixtures with water. Sensors based on the fluorophores obtained were sensitive to mercury, so they can be used to detect mercury concentrations in water. Further research will focus on determining the possibility of using these fluorophores to target medicines to affected organs. The authors have published an article on their research and results in the journal Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy.

"A disadvantage of organic fluorophores is their poor solubility in water and aqueous environments. At the same time, when water is added to organic solvents, most dyes and fluorophores have fluorescence quenching. However, in 2001, Professor Ben Zhong Tan of the Chinese University of Hong Kong found that some fluorophores observed not quenching, but rather an increase the fluorescence intensity. This is due to the formation of much larger particles, or nano-aggregates, from the molecules of fluorophores. Tan's discovery was of great significance. Much scientific effort has been devoted to studying the mechanism of his discovery, as well as to the design and synthesis of new fluorophores with the effect of increasing the emission. The fluorophores we obtained have also demonstrated in a mixture of organic solvent and water the effect described by Tang, and with a particular intensity. This opens the way to the practical application of the obtained fluorophores in various fields, especially in the aquatic environment," says Natalya Belskaya, Full Professor of the UrFU Department of Technology of Organic Synthesis and leader of the research team.

Monday, March 6, 2023

Light-Induced Acceleration of Intracellular Delivery

Conceptual image of various cellular uptake processes accelerated by light irradiation
Illustration Credit: Courtesy of Osaka Metropolitan University

Light-induced accelerating system to increase the concentration of bio- functional molecules around targeted cells and their cytosolic delivery.

Cell membranes are barriers that maintain cellular homeostasis, and the intracellular delivery of biologically functional molecules, including peptides, proteins, and nucleic acids to manipulate cellular functions. Conventional intracellular uptake processes require high concentrations of bio functional molecules with low permeability to pass through the cell membrane. This results in low drug activity because the probability of the bio-functional molecules entering target cells and their organelles is low. In addition, many drugs damage healthy cells as well as the cells that are supposed to target due to poor selectivity, making it necessary to develop technology that can increase drugs’ selectivity so that they enter targeted cells with high efficiency.

A research group led by Professor Ikuhiko Nakase (Assistant Director) and Professor Takuya Iida (Director) of the Research Institute for Light-induced Acceleration System (RILACS) at Osaka Metropolitan University used light-induced convection with the aid of superradiance to achieve enhanced permeability of the cell membrane, by locally concentrating bio-functional molecules, including cell-penetrating peptides (CPPs). The light-induced system was capable of effective drug delivery, even at concentrations as low as 1 pmol/L.

Wednesday, March 1, 2023

Chemical imaging could help predict efficacy of radiation therapy for an individual cancer patient

Concept illustration of body chemistry.
Image Credit: Nicole Smith, made with Midjourney. Courtesy of University of Michigan

Decisions on cancer treatment could become better tailored to individual patients with the adoption of a new imaging method being developed by University of Michigan researchers that maps the chemical makeup of a patient’s tumor.

Today, treatment methods for cancer—whether surgery, radiation therapy or immunotherapy—are recommended based mainly on the tumor’s location, size and aggressiveness. This information is usually obtained by anatomical imaging—MRI or CT scans or ultrasound and by biological assays performed in tissues obtained by tumor biopsies.

Yet, the chemical environment of a tumor has a significant effect on how effective a particular treatment may be. For example, a low oxygen level in tumor tissue impairs the effectiveness of radiation therapy.

Now, a team of scientists from the University of Michigan and two universities in Italy has demonstrated that an imaging system that uses special nanoparticles can provide a real-time, high-resolution chemical map that shows the distribution of chemicals of interest in a tumor.

It could lead to a way to help clinicians make better recommendations on cancer therapy tailored to a particular patient—precision medicine.

Monday, February 27, 2023

Chaos on the Nanometer Scale

Nanochaos on an asymmetric Rhodium nanocrystal
Illustration Credit: Vienna University of Technology

Sometimes, chemical reactions do not solely run stationary in one direction, but they show spatio-temporal oscillations. At TU Wien, a transition to chaotic behavior on the nanometer scale has now been observed.

Chaotic behavior is typically known from large systems: for example, from weather, from asteroids in space that are simultaneously attracted by several large celestial bodies, or from swinging pendulums that are coupled together. On the atomic scale, however, one does normally not encounter chaos – other effects predominate. Now, for the first time, scientists at TU Wien have been able to detect clear indications of chaos on the nanometer scale – in chemical reactions on tiny rhodium crystals. The results have been published in the journal Nature Communications.

Featured Article

Brain-Belly Connection: Gut Health May Influence Likelihood of Developing Alzheimer’s

UNLV study pinpoints 10 bacterial groups associated with Alzheimer’s disease, provides new insights into the relationship between gut makeup...

Top Viewed Articles