Superconductors are like the express trains in a metro system. Any electricity that “boards” a superconducting material can zip through it without stopping and losing energy along the way. As such, superconductors are extremely energy efficient, and are used today to power a variety of applications, from MRI machines to particle accelerators.
But these “conventional” superconductors are somewhat limited in terms of uses because they must be brought down to ultra-low temperatures using elaborate cooling systems to keep them in their superconducting state. If superconductors could work at higher, room-like temperatures, they would enable a new world of technologies, from zero-energy-loss power cables and electricity grids to practical quantum computing systems. And so scientists at MIT and elsewhere are studying “unconventional” superconductors — materials that exhibit superconductivity in ways that are different from, and potentially more promising than, today’s superconductors.
In a promising breakthrough, MIT physicists have today reported their observation of new key evidence of unconventional superconductivity in “magic-angle” twisted tri-layer graphene (MATTG) — a material that is made by stacking three atomically-thin sheets of graphene at a specific angle, or twist, that then allows exotic properties to emerge.
_1.jpg)


.jpg)
.jpg)

_1.jpg)

.jpg)


.jpg)

.jpg)
_RealPhoto-v3_x2_1720x1146.jpg)
.jpg)

.jpg)

