. Scientific Frontline: Marine Biology
Showing posts with label Marine Biology. Show all posts
Showing posts with label Marine Biology. Show all posts

Saturday, February 8, 2025

Women of Science: A Legacy of Achievement

Future generations to pursue their passions and break down barriers in the pursuit of knowledge.
Image Credit: Scientific Frontline stock image

Throughout history, women have made groundbreaking contributions to science, despite facing significant societal barriers and a lack of recognition. Their relentless pursuit of knowledge and innovation has shaped our understanding of the world and paved the way for future generations of scientists. This article celebrates the achievements of some of these remarkable women, highlighting their struggles and the impact of their work.

The women featured in this article, along with countless others throughout history, have made invaluable contributions to the advancement of science. Their achievements, often accomplished in the face of adversity and societal barriers, have shaped our understanding of the world and paved the way for future generations of scientists. These women demonstrate the power of perseverance, the importance of challenging established norms, and the profound impact that individual dedication can have on scientific progress. By recognizing and celebrating their legacies, we not only honor their contributions but also inspire future generations to pursue their passions and break down barriers in the pursuit of knowledge.

Thursday, February 6, 2025

New technology lights way for accelerating coral reef restoration

Improving coral feeding habits can have a positive domino effect on the marine ecosystem.
Photo Credit: Francesco Ungaro

Scientists have developed a novel tool designed to protect and conserve coral reefs by providing them with an abundance of feeding opportunities. 

The device, dubbed the Underwater Zooplankton Enhancement Light Array (UZELA), is an autonomous, programmable underwater light that works to draw in nearby zooplankton, microscopic organisms that coral feed on. 

After testing the submersible on two species of coral native to Hawaii over six months, researchers found that UZELA could greatly enhance local zooplankton density and increase the feeding rates of both healthy and bleached coral. Importantly, providing coral with greater amounts of food makes them stronger and more likely to be resilient against certain environmental threats, like heat stress or ocean acidification.

This result is impressive, especially at a time when rising ocean temperatures are forcing entire coral reefs to the cusp of collapse, said

Whale poop contains iron that may have helped fertilize past oceans

A blue whale photographed in September 2010.
Photo Credit: NOAA

The blue whale is the largest animal on the planet. It consumes enormous quantities of tiny, shrimp-like animals known as krill to support a body of up to 100 feet (30 meters) long. Blue whales and other baleen whales, which filter seawater through their mouths to feed on small marine life, once teemed in Earth’s oceans. Then over the past century they were hunted almost to extinction for their energy-dense blubber.

As whales were decimated, some thought the krill would proliferate in predator-free waters. But that’s not what happened. Krill populations dropped, too, and neither population has yet recovered.

A recent theory proposes that whales weren’t just predators in the ocean environment. Nutrients that whales excreted may have provided a key fertilizer to these marine ecosystems.

Research led by University of Washington oceanographers supports that theory. It finds that whale excrement contains significant amounts of iron, a vital element that is often scarce in ocean ecosystems, and nontoxic forms of copper, another essential nutrient that in some forms can harm life.

The open-access study, the first to look at the forms of these trace metals in what’s commonly known as whale poop, was published in January in Communications Earth & Environment.

Monday, January 13, 2025

Apex predators in prehistoric Colombian oceans would have snacked on killer whales today

. Illustration of some of the apex predators in the Paja Formation biota with a human for scale.
Illustration Credit: Guillermo Torres, Hace Tiempo, Instituto von Humboldt.

Predators at the top of a marine food chain 130 million years ago ruled with more power than any modern species, McGill research into a marine ecosystem from the Cretaceous period revealed. 

The study, published in the Zoological Journal of the Linnean Society, reconstructs the ecosystem of Colombia’s Paja Formation, and finds it was teeming with marine reptiles reaching over 10 meters in length that inhabited a seventh trophic level.  

Trophic levels are the layers or ranks within a food chain that describe the roles organisms play in an ecosystem based on their source of energy and nutrients. Essentially, they help define who eats whom in an ecosystem. Today’s marine trophic levels cap at six, with creatures like killer whales and great white sharks. 

The discovery of giant marine reptile apex predators occupying a seventh trophic level underscores the Paja ecosystem’s unmatched diversity and complexity, offering a rare view into an evolutionary arms race among predators and prey. 

Monday, April 8, 2024

Deep parts of Great Barrier Reef ‘insulated’ from global warming – for now

Mesophotic corals on the Great Barrier Reef.
Photo Credit Prof Peter Mumby
Some deeper areas of the Great Barrier Reef are insulated from harmful heatwaves – but that protection will be lost if global warming continues, according to new research.

High surface temperatures have caused mass “bleaching” of the Great Barrier Reef in five of the last eight years, with the latest happening now.

Climate change projections for coral reefs are usually based on sea surface temperatures, but this overlooks the fact that deeper water does not necessarily experience the same warming as that at the surface.

The new study – led by the universities of Exeter and Queensland – examined how changing temperatures will affect mesophotic corals (depth 30-50 meters).

It found that separation between warm buoyant surface water and cooler deeper water can insulate reefs from surface heatwaves, but this protection will be lost if global warming exceeds 3°C above pre-industrial levels.

The researchers say similar patterns could occur on other reefs worldwide, but local conditions affecting how the water moves and mixes will mean the degree to which deeper water coral refuges exist and remain insulated from surface heatwaves will vary.

“Coral reefs are the canary in the coalmine, warning us of the many species and ecosystems affected by climate change,” said Dr Jennifer McWhorter, who led the research during a QUEX PhD studentship at the universities of Exeter and Queensland.

Friday, April 5, 2024

Tomorrow's reefs – the importance of environmental awareness in coral restoration

Restoration nursery in the northern Red Sea of smooth cauliflower coral (Stylophora pistillata), almost ready for reef transplantation. Classified as near-threatened, S. pistillata is native to the wider Indo-Pacific region. This nursery is at 5 metres depth, close to the Inter University Institute of Marine Science, Eilat.
Photo Credit: H Nativ/Morris Kahn Marine Research

Around the world, projects are underway to save or rebuild damaged coral reefs. However, many restoration projects fail within just a few years. Giving more consideration to current and future environmental conditions would, in many cases, improve long-term restoration success, say the researchers behind a new article published in Plos Biology.

Coral reefs are extremely valuable. An estimated 25 percent of all plants and animals in the ocean, and 1 billion people worldwide depend on them – for food, income, coastal protection or cultural traditions. But their existence is also threatened by multiple factors, such as climate change, pollution, overfishing and coastal development.

Relying on climate change mitigation alone to ensure the future viability of coral reefs is no longer realistic. Targeted efforts are now needed, and restoration of damaged coral reefs has today become a multimillion-dollar business. Nevertheless, the long-term outcome of many coral restoration projects is highly uncertain.

Thursday, April 4, 2024

Shy sea anemones are more likely to survive heatwaves

Photo Credit: Praveen Kenderla

Even in nature, pride can prevail. A study with researchers from the University of Gothenburg shows that sea anemones that react more slowly to change can survive a heatwave better than individuals that change their behavior quickly.

Along the Atlantic coasts of Europe, many species are exposed to abrupt shifts in habitat. Tides, storms and rapid temperature changes are commonplace for the marine species that live there. With climate change, heatwaves are expected to become more frequent, and researchers wanted to find out how coastal marine species cope with extreme water temperatures. They chose to study the sea anemone species Actinia equina, a species that exhibits individual behaviors.

Bold or shy

“We call them animal personalities. They are different behavioral life strategies found in the same species. The anemones we studied have two personality traits, bold and shy, and in extreme heat waves the shy anemones do better,” says Lynne Sneddon, a zoophysiologist at the University of Gothenburg and co-author of the study published in the Journal of Experimental Biology.

Tuesday, April 2, 2024

AI breakthrough: UH researchers help uncover climate impact on whales

Underside of a humpback whale’s tail fluke which can serve as a “finger-print” for identification.
Photo Credit: Adam Pack

More than 10,000 images of humpback whale tail flukes collected by University of Hawaiʻi researchers have played a pivotal role in revealing both positive and negative impacts on North Pacific humpback whales, positive trends in the historical annual abundance of North Pacific humpback whales, and how a major climate event negatively impacted the population. Adam Pack, who heads the UH Hilo Marine Mammal Laboratory, Lars Bejder, director of the UH Mānoa Marine Mammal Research Program (MMRP) and graduate students Martin van Aswegen and Jens Currie, co-authored a study on humpback whales in the North Pacific Ocean, and the images—along with artificial intelligence (AI)-driven image recognition—were instrumental in tracking individuals and offering insights into their 20% population decline observed in 2012–21.

“The underside of a humpback whales tail fluke has a unique pigmentation pattern and trailing edge that can serve as the ‘finger-print’ for identifying individuals,” said Pack.

Friday, March 29, 2024

‘Back to the Future’ to Forecast the Fate of a Dead Florida Coral Reef

Alex Modys, Ph.D., diving at the coral death assemblage in Pompano Ridge and digging up a subfossil coral, Orbicella annularis.
Photo Credit: Anton Olenik, Ph.D., Florida Atlantic University

Rising temperatures and disease outbreaks are decimating coral reefs throughout the tropics. Evidence suggests that higher latitude marine environments may provide crucial refuges for many at-risk, temperature-sensitive coral species. However, how coral populations expand into new areas and sustain themselves over time is constrained by the limited scope of modern observations. 

What can thousands of years of history tell us about what lies ahead for coral reef communities? A lot. In a new study, Florida Atlantic University researchers and collaborators provide geological insights into coral range expansions by reconstructing the composition of a Late Holocene-aged subfossil coral death assemblage in an unusual location in Southeast Florida and comparing it to modern reefs throughout the region. 

Located off one of the most densely populated and urbanized coastlines in the continental United States, the Late Holocene coral death assemblage known as “Pompano Ridge,” records a northward range expansion of tropical coral communities that occurred during a period of regional climate warming more than 2,000 years ago.

Could this happen again in the face of climate change? Going “back to the future,” this study offers a unique glimpse into what was once a vibrant coral reef assemblage and explores if history can repeat itself.

Wednesday, March 20, 2024

Hypoxia is widespread and increasing in the ocean off the Pacific Northwest coast

In late August, OSU's Jack Barth and his colleagues deployed a glider that traversed Oregon’s near-shore waters from Astoria to Coos Bay and measured the oxygen levels through the water column, and beamed the data back to OSU computers.
Photo Credit: Courtesy of Jack Barth.

Low oxygen conditions that pose a significant threat to marine life are widespread and increasing in coastal Pacific Northwest ocean waters as the climate warms, a new study shows.

Researchers found that in 2021, more than half the continental shelf off the Pacific Northwest coast experienced the low-oxygen condition known as hypoxia, said the study’s lead author, Jack Barth of Oregon State University.

“We’ve known that low oxygen conditions are increasing based on single points of study in the past, but this confirms that these conditions are occurring across Pacific Northwest coastal waters,” said Barth, an oceanography professor in the College of Earth, Ocean, and Atmospheric Sciences. “The 2021 season was unusually strong compared to past years but with climate change, we are headed in a direction where this may be the norm.”

The new study, published recently in Nature Scientific Reports, is based on data collected by an unprecedented number of research vessels and autonomous underwater gliders that were collecting measurements in the ocean during summer 2021.

Wednesday, March 13, 2024

Menopause explains why some female whales live so long

Orcas
Photo Credit: NOAA

Females of some whale species have evolved to live drastically longer lives so they can care for their families, new research shows.

The study focused on five whale species that – along with humans – are the only mammals known to go through menopause.

The findings show that females of these whale species that experience menopause live around 40 years longer than other female whales of a similar size.

By living longer without extending their “reproductive lifespan” (the years in which they breed), these females have more years to help their children and grandchildren, without increasing the “overlap” period when they compete with their daughters by breeding and raising calves at the same time.

This new research shows that – despite being separated by 90 million years of evolution – whales and humans show remarkably similar life histories, which have evolved independently.

The study was carried out by the universities of Exeter and York, and the Center for Whale Research.

“The process of evolution favors traits and behaviors by which an animal passes its genes to future generations,” said lead author Dr Sam Ellis, from the University of Exeter.

Marine heat waves disrupt the ocean food web in the northeast Pacific Ocean

Pyrosomes.
Photo Credit: Mark Farley, Hatfield Marine Science Center, Oregon State University.

Marine heat waves in the northeast Pacific Ocean create ongoing and complex disruptions of the ocean food web that may benefit some species but threaten the future of many others, a new study has shown.

The study, just published in the journal Nature Communications, is the first of its kind to examine the impacts of marine heat waves on the entire ocean ecosystem in the northern California Current, the span of waters along the West Coast from Washington to Northern California.

The researchers found that the biggest beneficiary of marine heat waves is gelatinous zooplankton – predominantly cylindrical-shaped pyrosomes that explode in numbers following a marine heat wave and shift how energy moves throughout the food web, said lead author Dylan Gomes, who worked on the study as a postdoctoral scholar with Oregon State University’s Marine Mammal Institute.

“If you look at single species interactions, you’re likely to miss a lot,” Gomes said. “The natural effects of a disturbance are not necessarily going to be straightforward and linear. What this showed us is that these heat waves impact every predator and prey in the ecosystem through direct and indirect pathways.”

The project was a collaboration by Oregon State University and the National Oceanic and Atmospheric Administration. Joshua Stewart, an assistant professor with the Marine Mammal Institute, mentored Gomes and co-authored the paper.

Tuesday, March 12, 2024

Range-shifting fishes are climate-change losers, according to new research

Pouting (Trisopterus luscus)
Photo Credit: Diego Delso
(CC BY-SA 4.0 DEED)

The warming of the Earth’s oceans due to climate change is affecting where the world’s fishes live, eat and spawn — and often in ways that can negatively impact their populations. That’s according to a new paper in the journal Nature Ecology and Evolution.

The researchers write that populations that experience rapid-range shift decline noticeably, up to 50 per cent over a decade. The populations affected most are those living on the northern poleward edges of their species’ range.

“There is a conventional wisdom among many climate-change biologists that species that shift their ranges quickly by moving northward should provide a mechanism to sustain healthy populations — that shifting species should be climate-change winners. Our results show the exact opposite,” says paper co-author Jean-Philippe Lessard, a professor in the Department of Biology.

“Species that are shifting their range quickly experience little change in their population size in their core range. But some of them experience a major collapse in their populations at the northern edges.

“In fact, the population collapse is mostly driven by the northern poleward populations,” he adds. “We were expecting that many individuals from the core of the range would be moving up north due to climate change and maintain these northern populations. But the northern-edge populations are the ones most likely to collapse.”

Maternal obesity may promote liver cancer

Obese mice pass on an altered microbiome to their offspring, which has an impact on liver health in adulthood and increases the risk of liver cancer. Normalising the intestinal microbiome reduces the risk of cancer. Specific families of bacteria are linked to tumour burden and liver inflammation.
Image Credit: Toso, Moeckli et al. 2024
CC-by-nc-nd

A team from the UNIGE and the HUG has revealed the role of the microbiota in the increased risk of developing liver disease in the offspring of mothers suffering from obesity.

Obesity, which could reach 50% of the population in certain developed countries by 2030, is a major public health concern. It not only affects the health of those who suffer from it, but could also have serious consequences for their offspring. Scientists at the University of Geneva (UNIGE) and the Geneva University Hospitals (HUG) have studied the impact of maternal obesity on the risk of developing liver disease and liver cancer. Using an animal model, the team discovered that this risk was indeed much higher in the offspring of mothers suffering from obesity. One of the main causes was the transmission of a disturbed intestinal microbiota from the mother, resulting in a chronic liver disease whose effects became apparent in adulthood. These results, which have yet to be confirmed in humans, are a warning signal and a call for action to limit the deleterious effect of obesity on children. This research is published in the journal JHEP Reports.

History repeats as Coral Bay faces mass loss of coral and fish life

Photo Credit: Nico Smit

A perfect storm of environmental factors has seen a monumental loss of fish and coral life at a popular area of Ningaloo Reef in Western Australia’s Gascoyne region — however Curtin University research into the event shows there is hope it will recover.

In March 2022, during the annual coral spawning event, calm weather and limited tidal movement combined to trap the coral’s eggs within Bills Bay, at the town of Coral Bay.

This led to an excess of nutrients in the water which consumed more oxygen than usual — causing massive numbers of fish and corals to die from asphyxiation.

Study lead Associate Professor Zoe Richards, from Curtin’s School of Molecular and Life Sciences, said a lack of oxygen is a well-known risk for tropical coral reefs.

“Severely low oxygen levels in the ocean can create ‘dead zones’ where almost nothing can live, causing a lot of harm to nature and, in tourist areas such as Coral Bay, this can also impact the economy and community,” Associate Professor Richards said.

Monday, March 11, 2024

Unprecedented heatwaves revealed by marine lab’s historic data

Photo Credit: Courtesy of University of Auckland

A unique record at the University of Auckland's Leigh marine lab shows dramatic change in the Hauraki Gulf.

A thermometer dipped in a bucket of sea water on New Year’s Day in 1967 began a unique record which shows the dramatic intensification of warming in the Hauraki Gulf.

Sea-surface readings at the Leigh Marine Laboratory north of Auckland since that time indicate the “unprecedented nature of recent marine heatwaves,” according to Dr Nick Shears of the University of Auckland, Waipapa Taumata Rau.

The number of marine heatwave days and their cumulative intensity has increased sharply since 2012, Shears and his co-authors write in a paper published in the New Zealand Journal of Marine and Freshwater Research.

In past decades, some years had no heatwaves, but that hasn’t happened since 2012. Sponges `melting,’ becoming detached from rocks and dying, along with seaweed and kelp die-offs, are among temperature effects.

Especially warm autumns and winters have likely facilitated an increase in subtropical and tropical species such as the long-spined sea urchin Centrostephanus rodgersii, a voracious herbivore which can lay waste to deep reef environments.

Friday, March 8, 2024

Marine algae implants could boost crop yields

Discovery could lead to more sustainable food supply
Photo Credit: Oktavianus Mulyadi

Scientists have discovered the gene that enables marine algae to make a unique type of chlorophyll. They successfully implanted this gene in a land plant, paving the way for better crop yields on less land. 

Finding the gene solves a long-standing mystery amongst scientists about the molecular pathways that allow the algae to manufacture this chlorophyll and survive. 

“Marine algae produce half of all the oxygen we breathe, even more than plants on land. And they feed huge food webs, fish that get eaten by mammals and humans,” said UC Riverside assistant professor of bioengineering and lead study author Tingting Xiang. “Despite their global significance, we did not understand the genetic basis for the algae’s survival, until now.”

The study, published in Current Biology, also documents another first-of-its-kind achievement: demonstrating that a land plant could produce the marine chlorophyll. Tobacco plants were used for this experiment, but in theory, any land plant may be able to incorporate the marine algae gene, allowing them to absorb a fuller spectrum of light and achieve better growth. 

Wednesday, February 28, 2024

Aerial surveys reveal ample populations of rays in southeast Florida

The giant manta ray is designated as threatened under the U.S. Endangered Species Act and is protected in Florida waters.
Photo Credit: Steve Kajiura, Florida Atlantic University

The whitespotted eagle ray (Aetobatus narinari) and the giant manta ray (Mobula birostris) are rapidly declining globally. Both species are classified by the International Union for Conservation of Nature as endangered worldwide and the giant manta ray is designated as threatened under the United States Endangered Species Act.

In Florida waters, giant manta rays and whitespotted eagle rays are protected species. To provide effective management for these species, it is necessary to gather information on their distribution and abundance.

Using aerial surveys, Florida Atlantic University researchers conducted a unique long-term (2014 to 2021) study to quantify the spatial (latitude) and temporal (month, year) abundance of the whitespotted eagle rays and giant manta rays in Southeast Florida. The researchers conducted 120 survey flights between January 2014 and December 2021 along the Atlantic Coast from Miami north to the Jupiter Inlet. They reviewed the video footage from the flights to quantify the number of rays of each species.

New Fish Species Discovered at Remote Islands Off Mexico’s Pacific Coast

Two females of the newly discovered species, Halichoeres sanchezi or the tailspot wrasse. The males are larger and have different coloration.
Photo Credit: Allison & Carlos Estape

A team of scientists including Ben Frable of UC San Diego’s Scripps Institution of Oceanography have discovered a new species of tropical fish during an expedition to the remote islands of the Revillagigedo Archipelago off Mexico’s Pacific coast. The fish is likely endemic to these islands, meaning it is found no place else on Earth. The Revillagigedos are sometimes called the “Mexican Galapagos” for their trove of marine biodiversity and rugged beauty. 

The researchers describe the new species, dubbed Halichoeres sanchezi or the tailspot wrasse, in a paper published Feb. 28 in the journal PeerJ. Halichoeres sanchezi was named in honor of marine scientist Carlos Armando Sánchez Ortíz of the Universidad Autónoma de Baja California Sur (UABCS) who collected the first specimen and who organized the 2022 expedition that led to the fish’s discovery.

The eight specimens of the new species collected by the team range in size from around an inch long to nearly six inches. The smaller females of the species are mostly white with reddish horizontal stripes along their top half and black patches on their dorsal fin, behind their gills, and just ahead of their tail fin. Frable described the males as “orangy red up top fading to a yellow belly with a dark band at the base of the tail.” 

Halichoeres sanchezi is a member of the wrasse family, a highly diverse and colorful group of more than 600 species. Most wrasse are less than seven inches long, such as the bluestreak cleaner wrasse (Labroides dimidiatus), but some get much larger like the California sheephead (Semicossyphus pulcher) or the massive humphead wrasse (Cheilinus undulatus), which can reach seven feet in length.

Researchers encountered the new wrasse species inhabiting an underwater field of volcanic rubble at a depth of around 70 feet near San Benedicto Island.

Tuesday, February 27, 2024

‘Janitors’ of the Sea: Overharvested Sea Cucumbers Play Crucial Role in Protecting Coral

Photo Credit: Cody Clements

Corals are foundational for ocean life. Known as the rainforests of the sea, they create habitats for 25% of all marine organisms, despite only covering less than 1% of the ocean’s area. 

Coral patches the width and height of basketball arenas, used to be common throughout the world’s oceans. But due to numerous human-generated stresses and coral disease, which is known to be associated with ocean sediments, most of the world’s coral is gone.

“It’s like if all the pine trees in Georgia disappeared over a period of 30 to 40 years,” said Mark Hay, Regents’ Chair and the Harry and Anna Teasley Chair in Environmental Biology in the School of Biological Sciences at the Georgia Institute of Technology. “Just imagine how that affects biodiversity and ecosystems of the ocean.”

In first-of-its-kind research, Hay, along with research scientist Cody Clements, discovered a crucial missing element that plays a profound role in keeping coral healthy — an animal of overlooked importance known as a sea cucumber.

Featured Article

Videos with Cold Symptoms Activate Brain Regions and Trigger Immune Response

 Study on Brain Activity and Antibody Concentration Photo Credit:  Andrea Piacquadio People who watch videos of sneezing or sick people show...

Top Viewed Articles