. Scientific Frontline: Ecology
Showing posts with label Ecology. Show all posts
Showing posts with label Ecology. Show all posts

Tuesday, April 9, 2024

Tiny plastic particles are found everywhere

The researchers were out in the southern Arctic Ocean on the research vessel Polarstern and took water samples, which they analyzed for the smallest microplastic particles.
Photo Credit: Clara Leistenschneider, University of Basel

Microplastic particles can be found in the most remote ocean regions on earth. In Antarctica, pollution levels are even higher than previously assumed. This is one finding of a recent study involving researchers from the University of Basel.

It’s not the first study on microplastics in Antarctica that researchers from the University of Basel and the Alfred-Wegener Institute (AWI) have conducted. But analysis of the data from an expedition in spring 2021 shows that environmental pollution from these tiny plastic particles is a bigger problem in the remote Weddell Sea than was previously known.

The total of 17 seawater samples all indicated higher concentrations of microplastics than in previous studies. “The reason for this is the type of sampling we conducted,” says Clara Leistenschneider, doctoral candidate in the Department of Environmental Sciences at the University of Basel and lead author of the study.

The current study focused on particles measuring between 11 and 500 micrometers in size. The researchers collected them by pumping water into tanks, filtering it, and then analyzing it using infrared spectroscopy. Previous studies in the region had mostly collected microplastic particles out of the ocean using fine nets with a mesh size of around 300 micrometers. Smaller particles would simply pass through these plankton nets.

The results of the new study indicate that 98.3 percent of the plastic particles present in the water were smaller than 300 micrometers, meaning that they were not collected in previous samples. “Pollution in the Antarctic Ocean goes far beyond what was reported in past studies,” Leistenschneider notes. The study appears in the journal Science of the Total Environment.

Monday, April 8, 2024

Deep parts of Great Barrier Reef ‘insulated’ from global warming – for now

Mesophotic corals on the Great Barrier Reef.
Photo Credit Prof Peter Mumby
Some deeper areas of the Great Barrier Reef are insulated from harmful heatwaves – but that protection will be lost if global warming continues, according to new research.

High surface temperatures have caused mass “bleaching” of the Great Barrier Reef in five of the last eight years, with the latest happening now.

Climate change projections for coral reefs are usually based on sea surface temperatures, but this overlooks the fact that deeper water does not necessarily experience the same warming as that at the surface.

The new study – led by the universities of Exeter and Queensland – examined how changing temperatures will affect mesophotic corals (depth 30-50 meters).

It found that separation between warm buoyant surface water and cooler deeper water can insulate reefs from surface heatwaves, but this protection will be lost if global warming exceeds 3°C above pre-industrial levels.

The researchers say similar patterns could occur on other reefs worldwide, but local conditions affecting how the water moves and mixes will mean the degree to which deeper water coral refuges exist and remain insulated from surface heatwaves will vary.

“Coral reefs are the canary in the coalmine, warning us of the many species and ecosystems affected by climate change,” said Dr Jennifer McWhorter, who led the research during a QUEX PhD studentship at the universities of Exeter and Queensland.

Boreal forest and tundra regions worst hit over next 500 years of climate change, study shows

The boreal forest is the Earth's most significant provider of carbon storage and clean water
Photo Credit: Landon Parenteau

The boreal forest, covering much of Canada and Alaska, and the treeless shrublands to the north of the forest region, may be among the worst impacted by climate change over the next 500 years, according to a new study.

The study, led by researchers at the White Rose universities of York and Leeds, as well as Oxford and Montreal, and ETH, Switzerland, ran a widely-used climate model with different atmospheric concentrations of carbon dioxide to assess the impact climate change could have on the distribution of ecosystems across the planet up to the year 2500.

Most climate prediction models run to the year 2100, but researchers are keen to explore longer-term projections that give a global picture of how much humans, animals and plant-life may need to adapt to climate change beyond the next century, which is important as long-lived trees adapt at scales of centuries rather than decades.

First-of-its-kind integrated dataset enables genes-to-ecosystems research

DOE national laboratory scientists led by Oak Ridge National Laboratory have developed the first tree dataset of its kind, bridging molecular information about the poplar tree microbiome to ecosystem-level processes.
Illustration Credit: Andy Sproles/ORNL, U.S. Dept. of Energy

The first-ever dataset bridging molecular information about the poplar tree microbiome to ecosystem-level processes has been released by a team of Department of Energy scientists led by Oak Ridge National Laboratory. The project aims to inform research regarding how natural systems function, their vulnerability to a changing climate, and ultimately how plants might be engineered for better performance as sources of bioenergy and natural carbon storage.

The data, described in Nature Publishing Group’s Scientific Data, provides in-depth information on 27 genetically distinct variants, or genotypes, of Populus trichocarpa, a poplar tree of interest as a bioenergy crop. The genotypes are among those that the ORNL-led Center for Bioenergy Innovation previously included in a genome-wide association study linking genetic variations to the trees’ physical traits. ORNL researchers collected leaf, soil and root samples from poplar fields in two regions of Oregon — one in a wetter area subject to flooding and the other drier and susceptible to drought. 

Details in the newly integrated dataset range from the trees’ genetic makeup and gene expression to the chemistry of the soil environment, analysis of the microbes that live on and around the trees and compounds the plants and microbes produce.

The dataset “is unprecedented in its size and scope,” said ORNL Corporate Fellow Mitchel Doktycz, section head for Bioimaging and Analytics and project co-lead. “It is of value in answering many different scientific questions.” By mining the data with machine learning and statistical approaches, scientists can better understand how the genetic makeup, physical traits and chemical diversity of Populus relate to processes such as cycling of soil nitrogen and carbon, he said. 

Friday, April 5, 2024

Tomorrow's reefs – the importance of environmental awareness in coral restoration

Restoration nursery in the northern Red Sea of smooth cauliflower coral (Stylophora pistillata), almost ready for reef transplantation. Classified as near-threatened, S. pistillata is native to the wider Indo-Pacific region. This nursery is at 5 metres depth, close to the Inter University Institute of Marine Science, Eilat.
Photo Credit: H Nativ/Morris Kahn Marine Research

Around the world, projects are underway to save or rebuild damaged coral reefs. However, many restoration projects fail within just a few years. Giving more consideration to current and future environmental conditions would, in many cases, improve long-term restoration success, say the researchers behind a new article published in Plos Biology.

Coral reefs are extremely valuable. An estimated 25 percent of all plants and animals in the ocean, and 1 billion people worldwide depend on them – for food, income, coastal protection or cultural traditions. But their existence is also threatened by multiple factors, such as climate change, pollution, overfishing and coastal development.

Relying on climate change mitigation alone to ensure the future viability of coral reefs is no longer realistic. Targeted efforts are now needed, and restoration of damaged coral reefs has today become a multimillion-dollar business. Nevertheless, the long-term outcome of many coral restoration projects is highly uncertain.

Tuesday, April 2, 2024

Older trees help to protect an endangered species

The longest-lived trees in the Pyrenees facilitate the survival of wolf lichen, a species threatened throughout Europe.
Photo Credit: Ot Pasques

The oldest trees in the forest help to prevent the disappearance of endangered species in the natural environment, according to a study led by the University of Barcelona. This is the case of the wolf lichen — threatened throughout Europe —, which now finds refuge in the oldest trees in the high mountains of the Pyrenees. This study reveals for the first time the decisive role of the oldest trees in the conservation of other living beings thanks to their characteristic and unique physiology.

Conserving the oldest trees in forests will be essential to protect biodiversity in forest ecosystems, which are increasingly affected by the impact of global change. This is stated on a new study published in the journal Proceedings of the National Academy of Sciences. The study is signed by the experts Sergi Munné-Bosch and Ot Pasques, from the Faculty of Biology and the UB Biodiversity Research Institute (IRBio).

AI breakthrough: UH researchers help uncover climate impact on whales

Underside of a humpback whale’s tail fluke which can serve as a “finger-print” for identification.
Photo Credit: Adam Pack

More than 10,000 images of humpback whale tail flukes collected by University of Hawaiʻi researchers have played a pivotal role in revealing both positive and negative impacts on North Pacific humpback whales, positive trends in the historical annual abundance of North Pacific humpback whales, and how a major climate event negatively impacted the population. Adam Pack, who heads the UH Hilo Marine Mammal Laboratory, Lars Bejder, director of the UH Mānoa Marine Mammal Research Program (MMRP) and graduate students Martin van Aswegen and Jens Currie, co-authored a study on humpback whales in the North Pacific Ocean, and the images—along with artificial intelligence (AI)-driven image recognition—were instrumental in tracking individuals and offering insights into their 20% population decline observed in 2012–21.

“The underside of a humpback whales tail fluke has a unique pigmentation pattern and trailing edge that can serve as the ‘finger-print’ for identifying individuals,” said Pack.

Friday, March 29, 2024

‘Back to the Future’ to Forecast the Fate of a Dead Florida Coral Reef

Alex Modys, Ph.D., diving at the coral death assemblage in Pompano Ridge and digging up a subfossil coral, Orbicella annularis.
Photo Credit: Anton Olenik, Ph.D., Florida Atlantic University

Rising temperatures and disease outbreaks are decimating coral reefs throughout the tropics. Evidence suggests that higher latitude marine environments may provide crucial refuges for many at-risk, temperature-sensitive coral species. However, how coral populations expand into new areas and sustain themselves over time is constrained by the limited scope of modern observations. 

What can thousands of years of history tell us about what lies ahead for coral reef communities? A lot. In a new study, Florida Atlantic University researchers and collaborators provide geological insights into coral range expansions by reconstructing the composition of a Late Holocene-aged subfossil coral death assemblage in an unusual location in Southeast Florida and comparing it to modern reefs throughout the region. 

Located off one of the most densely populated and urbanized coastlines in the continental United States, the Late Holocene coral death assemblage known as “Pompano Ridge,” records a northward range expansion of tropical coral communities that occurred during a period of regional climate warming more than 2,000 years ago.

Could this happen again in the face of climate change? Going “back to the future,” this study offers a unique glimpse into what was once a vibrant coral reef assemblage and explores if history can repeat itself.

Risk factors for faster aging in the brain revealed in new study

Governments have been urged to act decisively before 2035 to ensure global warming can be kept below 2°C by 2100.
Photo Credit: Nöel Puebla

Researchers from the Nuffield Department of Clinical Neurosciences at the University of Oxford have used data from UK Biobank participants to reveal that diabetes, traffic-related air pollution and alcohol intake are the most harmful out of 15 modifiable risk factors for dementia.

The researchers had previously identified a ‘weak spot’ in the brain, which is a specific network of higher-order regions that not only develop later during adolescence, but also show earlier degeneration in old age. They showed that this brain network is also particularly vulnerable to schizophrenia and Alzheimer’s disease.

In this new study, published in Nature Communications, they investigated the genetic and modifiable influences on these fragile brain regions by looking at the brain scans of 40,000 UK Biobank participants aged over 45.

The researchers examined 161 risk factors for dementia, and ranked their impact on this vulnerable brain network, over and above the natural effects of age. They classified these so-called ‘modifiable’ risk factors − as they can potentially be changed throughout life to reduce the risk of dementia − into 15 broad categories: blood pressure, cholesterol, diabetes, weight, alcohol consumption, smoking, depressive mood, inflammation, pollution, hearing, sleep, socialization, diet, physical activity, and education.

Thursday, March 28, 2024

New rapid method to predict effects of conservation actions on complex ecosystems

From left: Dr Matthew Adams, Sarah Vollert, Professor Drovandi
Photo Credit: Courtesy of Queensland University of Technology

A new way to analyze the effects of conservation actions on complex ecosystems has cut the modelling time from 108 days to six hours, QUT statisticians have found:

  • Some conservation efforts backfire, eg eradicating feral cats could lead to rabbit explosion
  • Modeling predicts the cascading effects through species in a complex ecosystem, but is computationally slow
  • New method cuts prediction time from 3.5 months to six hours

PhD researcher Sarah Vollert, from the School of Mathematical Sciences and the QUT Centre for Data Sciences, said it was impossible to predict exactly how conservation actions would affect each species.

“Though well-intentioned, conservation actions have the potential to backfire,” Ms. Vollert said.

“For example, if decision-makers decide to eradicate feral cats, it could lead to explosive populations of their prey species, like rabbits.

“Uncontrolled rabbit populations could then have devastating effects on the vegetation, destroying the habitat native species need to survive.

Tuesday, March 26, 2024

Study explores severe hurricanes and coral reef sponge recolonization

For the study, scuba divers collected small samples of the thin purple morphotype sponges 14 and 22 months after the two Category 5 hurricanes in St. Thomas.
Photo Credit: Karli Hollister

Named for its ropy-looking long branches, Aplysina cauliformis, a coral reef sponge, provides a critical 3D habitat for marine organisms and helps to stabilize the foundation of coral reefs. However, these upright branching sponges are highly susceptible to breaking during storms, which increases sponge fragmentation and contributes to population clonality and inbreeding.

Many sponges can survive severe damage and undergo frequent fragmentation, which is considered a mechanism for asexual reproduction. While fragmentation is a commonly utilized reproductive strategy in rope sponges, they also can reproduce sexually by producing larvae. How and whether they recolonize following extreme weather events is critical for the restoration and resilience of coral reef ecosystems.

Hurricanes Irma and Maria – both in 2017 – were two rapid succession storms that provided researchers from Florida Atlantic University’s Harriet L. Wilkes Honors College and Harbor Branch Oceanographic Institute, and collaborators from the University of the Virgin Islands, the University of Mississippi and the University of Alabama, with a unique opportunity to address a priority concern – the resilience of coral reef sponge populations after severe hurricanes. 

Behavior of ant queens is shaped by their social environment

A black garden ant queen caring for her brood
Photo Credit: © Romain Libbrecht)

The queens in colonies of social insects, such as ants, bees, and wasps, are considered the veritable embodiment of specialization in the animal kingdom. The common perception is that the queen's only task is to lay eggs – and that this attribute is an inherent trait, not influenced by external factors. In contrast, recent research undertaken at Johannes Gutenberg University Mainz (JGU) has demonstrated that in certain ant colonies the social environment can play a crucial role in shaping the behavioral specialization of the queens. "With regard to the ant species we studied, it is social factors that control whether queens become specialized or not. Our findings challenge the widely accepted notion of social insect queens as inherently specialized egg-laying machines," stated Dr. Romain Libbrecht.

The research was conducted by the Reproduction, Nutrition, and Behavior in Insect Societies group at JGU under the supervision of Dr. Romain Libbrecht, an evolutionary biologist. The corresponding paper has recently been published in Functional Ecology. Dr. Romain Libbrecht currently works at the Centre National de la Recherche Scientifique (CNRS) in the Insect Biology Research Institute of the University of Tours.

Protect habitat to prevent pandemics

Photo Credit: Vlad Kutepov

An international research team has proposed using ecological perspectives to prevent the occurrence of disease outbreaks.

Pandemics begin when disease-harboring animals, such as bats, come in close proximity with people, livestock or other animals and pass on new pathogens. Viruses such as SARS-CoV-2, SARS-CoV-1, Nipah, Hendra and possibly Ebola have all fatally spilled over from bats to humans, sometimes through an intermediate host.

Led by Cornell University expert, Professor Raina Plowright, the international team has proposed a roadmap for how to prevent the next pandemic by conserving natural areas and promoting biodiversity, thereby providing animals with enough food, safe havens and distance to limit contact and transfer of pathogens to humans.

Professor Plowright said: “The world is focused on how can we detect and then contain a novel pathogen once it is circulating in humans, rather than how can we prevent that pathogen from entering the human population in the first place.”

The roadmap uses insights from recently published case studies to explain the mechanisms linking environmental change and spillover of pathogens from animals to humans and identifies ecological interventions to disrupt these links and policy frameworks to implement them.

Monday, March 25, 2024

‘Winners and losers’ as global warming forces plants uphill

Cerrado savanna in the Chapada dos Veadeiros National Park, Brazil.
Photo Credit Ana Christina

Some plant species will “win” and others will “lose” as global warming forces them to move uphill, new research shows.

Scientists examined the current range of more than 7,000 plant species in Brazil’s Cerrado savanna, and estimated shifts based on warming by 2040.

The fate of plant species will depend on where they live: lowland species can move uphill for cooler conditions, but mountain plants have nowhere to go.

The study was carried out by the universities of Exeter and Campinas, the Royal Botanic Garden Edinburgh and Trinity College Dublin.

“Every plant and animal species has a ‘geographical range’ – the area where conditions are suitable for it to live,” said Mateus Silva, from the University of Exeter.

“As the climate warms, plants’ ranges are shifting, with many species going uphill.

“This is the pattern we found in the Cerrado – suggesting lowland areas may become local extinction hotspots, while mountains will host new combinations of plant species.”

Honey bees at risk for colony collapse from longer, warmer fall seasons

WSU researchers and students collect samples and perform honey bee colony health assessments in orchards near Modesto, CA.
Photo Credit: Brandon Hopkins

The famous work ethic of honey bees might spell disaster for these busy crop pollinators as the climate warms, new research indicates.

Flying shortens the lives of bees, and worker honey bees will fly to find flowers whenever the weather is right, regardless of how much honey is already in the hive. Using climate and bee population models, researchers found that increasingly long autumns with good flying weather for bees raises the likelihood of colony collapse in the spring.

The study, published in the journal Scientific Reports, focused on the Pacific Northwest but holds implications for hives across the U.S. The researchers also modeled a promising mitigation: putting colonies into indoor cold storage, so honey bees will cluster in their hive before too many workers wear out.

“This is a case where a small amount of warming, even in the near future, will make a big impact on honey bees,” said lead author Kirti Rajagopalan, a Washington State University climate researcher. “It’s not like this is something that can be expected 80 years from now. It is a more immediate impact that needs to be planned for.”

Thousands of tons of microplastics found in Moreton Bay

Dr Elvis Okoffo has tested samples of mud from Moreton Bay for microplastics.
Photo Credit: Courtesy of University of Queensland

University of Queensland researchers estimate there could be up to 7000 tons of microplastics polluting vital ecosystems in Brisbane’s Moreton Bay.

Dr Elvis Okoffo from UQ’s Queensland Alliance for Environmental Health Sciences said the team measured plastic stored within 50 surface sediment samples collected across Moreton Bay.

“The level of plastic contamination we found is equivalent to three Olympic swimming pools full of plastic or 1.5 million single use plastic bags,” Dr Okoffo said.

“The main types of plastic detected were polyethylene (PE) and polyvinyl chloride (PVC).

“PE is used for single-use items such as plastic food wrapping, bags and bottles and PVC is used in pipes, building materials, electronics, and clothing.

Friday, March 22, 2024

Bees need food up to a month earlier than provided by recommended pollinator plants

Buff-tailed bumblebee (Bombus terrestris).
Photo Credit Matthias Becher

New research from the Universities of Oxford and Exeter has revealed that plant species recommended as “pollinator friendly” * in Europe begin flowering up to a month too late in the spring to effectively contribute to bee conservation.

This “hungry gap” results in low colony survival and low production of queens for the following year.

The results showed that pollen and nectar availability during the early colony founding stage is a critical, and previously under-appreciated, factor in bee colony success. **

The study has been published in the journal Insect Conservation and Diversity

Senior author Dr Tonya Lander (Department of Biology, University of Oxford) said: “The results give us a simple and practical recommendation to help bees: to enhance hedgerows with early blooming species, especially ground ivy, red dead-nettle, maple, cherry, hawthorn, and willow, which improved colony success rate from 35% to 100%. This approach focuses on existing hedgerows in agricultural land and doesn’t reduce farm cropping area, so can appeal to land managers whilst also providing important conservation outcomes for pollinators.” 

These were assessed using the BEE-STEWARD model, which integrates data and runs simulations to predict how changes in different factors may impact bee populations over time.

Thursday, March 21, 2024

Product that kills agricultural pests also deadly to native Pacific Northwest snail

Pacific sideband snail.
Photo Credit: William P. Leonard

A product used to control pest slugs on farms in multiple countries is deadly to least one type of native woodland snail endemic to the Pacific Northwest, according to scientists who say more study is needed before the product gains approval in the United States.

Dee Denver of the Oregon State University College of Science led a 10-week laboratory project that showed the effect of a biotool marketed as Nemaslug on the Pacific sideband snail. The study was published today in PLOS One.

Nemaslug is based on the organism Phasmarhabditis hermaphrodita, a species of tiny, parasitic worm known as a nematode.

The speed of the Pacific sidebands’ demise depended on the concentration of Nemaslug exposure and the size and maturity of the snails, but by the end of the study all 90 were dead, whereas all 30 snails in a control group were still alive.

“This finding is a big deal because there are strong efforts to bring this commercialized nematode to U.S. markets to control invasive pests, such as the gray field slug, that cause damage to a variety of agricultural crops,” said Denver, who heads OSU’s Department of Integrated Biology and directs the university’s School of Life Sciences.

Climate change disrupts vital ecosystems in the Alps

Photo Credit: Samuel Walker

Reduced snow cover and shifting vegetation patterns in the Alps, both driven by climate change, are having major combined impacts on biodiversity and functioning of ecosystems in the high mountains, according to new research published today.

Mountain ranges covering vast areas of the world are warming much faster than surrounding lowland areas, triggering huge reductions in snow cover and rapid upward movement of dwarf-shrubs, such as heather.

Scientists at The University of Manchester have found that these changes are disrupting the timing of crucial alpine ecosystem functions performed by plants and soil microorganisms.

The research, published today in the journal Global Change Biology and funded by the UK Natural Environment Research Council, shows that high mountain ecosystems may be less capable of retaining the important nutrients needed to sustain plant growth and maintain biodiversity in these harsh environments.

Wednesday, March 20, 2024

Hypoxia is widespread and increasing in the ocean off the Pacific Northwest coast

In late August, OSU's Jack Barth and his colleagues deployed a glider that traversed Oregon’s near-shore waters from Astoria to Coos Bay and measured the oxygen levels through the water column, and beamed the data back to OSU computers.
Photo Credit: Courtesy of Jack Barth.

Low oxygen conditions that pose a significant threat to marine life are widespread and increasing in coastal Pacific Northwest ocean waters as the climate warms, a new study shows.

Researchers found that in 2021, more than half the continental shelf off the Pacific Northwest coast experienced the low-oxygen condition known as hypoxia, said the study’s lead author, Jack Barth of Oregon State University.

“We’ve known that low oxygen conditions are increasing based on single points of study in the past, but this confirms that these conditions are occurring across Pacific Northwest coastal waters,” said Barth, an oceanography professor in the College of Earth, Ocean, and Atmospheric Sciences. “The 2021 season was unusually strong compared to past years but with climate change, we are headed in a direction where this may be the norm.”

The new study, published recently in Nature Scientific Reports, is based on data collected by an unprecedented number of research vessels and autonomous underwater gliders that were collecting measurements in the ocean during summer 2021.

Featured Article

Autism and ADHD are linked to disturbed gut flora very early in life

The researchers have found links between the gut flora in babies first year of life and future diagnoses. Photo Credit:  Cheryl Holt Disturb...

Top Viewed Articles