Saturday, September 25, 2021

NASA Releases Interactive Graphic Novel “First Woman”

 


NASA released its first digital, interactive graphic novel on Saturday in celebration of National Comic Book Day. “First Woman: NASA’s Promise for Humanity” imagines the story of Callie Rodriguez, the first woman to explore the Moon.

While Callie’s story is fictional, the first woman and the first person of color will walk on the Moon, achieving these historic milestones as part of NASA’s Artemis missions. Through this graphic novel, NASA aims to inspire the next generation of explorers – the Artemis Generation.

Download, read, and interact with “First Woman” or listen to the audio version exclusively on NASA’s SoundCloud.

“The story of Callie captures how passion, dedication, and perseverance allow us to turn our dreams into reality,” said NASA Deputy Administrator Pam Melroy. “Callie, much like myself, grew her skills, seized learning opportunities, and overcame challenges to become a NASA astronaut. Her diversity is reflected in our own astronaut corps today – it's important we can see ourselves as the explorers among the stars.”

The 40-page comic book highlights NASA technologies for traveling to, landing on, and exploring the Moon. The digital format comes to life, letting readers engage and interact through augmented reality elements using the First Woman website or their mobile devices.

Readers can download the First Woman application for Android or iOS to explore life-sized environments and 3D objects, including NASA’s Orion spacecraft and the lunar surface. Additional content includes videos, games, challenges to earn collector badges, and ways to virtually participate in NASA missions.

“We crafted this graphic novel and digital ecosystem to share NASA’s work in a different and exciting way,” said Derek Wang, director of communications for the Space Technology Mission Directorate at the agency’s Headquarters in Washington. “We set out to make the content both engaging and accessible. From space fans of all ages to hardworking educators looking for new ways to get students excited about STEM, we hope that there is something for everyone to enjoy.”

NASA plans to release a Spanish version of the first issue of the comic book, “From Dream to Reality,” on the website in the future.

Source/Credit: NASA

sn092521_01

Thursday, September 23, 2021

Vampire bats may coordinate with ‘friends’ over a bite to eat

 

Photo: Sherri and Brock Fenton
Vampire bats that form bonds in captivity and continue those “friendships” in the wild also hunt together, meeting up over a meal after independent departures from the roost, according to a new study.

Researchers attached tiny “backpack” computers to 50 vampire bats – some that had previously been in captivity together and others that had lived only in the wild – to track their movement during their nightly foraging outings. By day, the bats shared a hollow tree in Panama, and at night they obtained their meals by drinking blood from wounds they made on cows in nearby pastures.

Tracking data showed that vampire bats set out to forage separately rather than as a group – and those that had established social relationships would reunite during the hunt for what the researchers speculated was some sort of coordination over food.

The findings suggest “making friends” in the roost could create more interdependence among socially bonded vampire bats – meaning they could benefit from each other’s success at obtaining blood meals and join forces when competing with other groups of bats for food resources.

“Everything we’ve been studying with vampire bats has looked at what they’re doing inside of a roost. What nobody has really known up until now is whether these social relationships serve any function outside the roost,” said study co-author Gerald Carter, assistant professor of evolution, ecology and organismal biology at The Ohio State University.

“Understanding their interactions with a completely different group of bats out on the pasture can help us understand what’s going on inside the colony. If every time they leave the roost they’re getting into battles, that can increase the amount of cooperation within the colony.”

Co-author Simon Ripperger, a former postdoctoral researcher in Carter’s lab, later supplemented the tracking data by capturing video and audio of foraging vampire bats. He observed bats clustered together on one cow and others atop separate cows, some drinking from different wounds and some fighting over food access. He also made what are likely the first audio recordings of a specific type of vampire bat vocalization associated with foraging.

An experimental loop for simulating nuclear reactors in space

 
Will Searight is conducting research in nuclear thermal propulsion,
which could enable faster and more efficient space travel.
Image: ISTOCK/@3DSCULPTOR
Nuclear thermal propulsion, which uses heat from nuclear reactions as fuel, could be used one day in human spaceflight, possibly even for missions to Mars. Its development, however, poses a challenge. The materials used must be able to withstand high heat and bombardment of high-energy particles on a regular basis.

Will Searight, a nuclear engineering doctoral student at Penn State, is contributing to research that could make these advancements more feasible. He published findings from a preliminary design simulation in Fusion Science and Technology, a publication of the American Nuclear Society. 

To better investigate nuclear thermal propulsion, Searight simulated a small-scale laboratory experiment known as a hydrogen test loop. The setup mimics a reactor's operation in space, where flowing hydrogen travels through the core and propels the rocket — at temperatures up to nearly 2,200 degrees Fahrenheit. Searight developed the simulation using dimensions from detailed drawings of tie tubes, the components that make up much of the test loop through which hydrogen flows. Industry partner Ultra Safe Nuclear Corporation (USNC) provided the drawings.

“Understanding how USNC’s components behave in a hot hydrogen environment is crucial to bringing our rockets to space,” Searight said. “We’re thrilled to be working with one of the main reactor contractors for NASA’s space nuclear propulsion project, which is seeking to produce a demonstration nuclear thermal propulsion engine within a decade.”

Advised by Leigh Winfrey, associate professor and undergraduate program chair of nuclear engineering, Searight used Ansys Fluent, a modeling software, to design a simulation loop from a stainless-steel pipe with an outer diameter of about two inches. In the model, the loop connects to a hydrogen pump and circulates hot hydrogen through a test section adjacent to a heating element. 

Peering into the Moon's shadows

The 17 newly studied craters and depressions are located near the South Pole. While the smallest of these regions (region 11) has a size of only 0.18 square kilometers, the largest (region 9) measures 54 square kilometers. Region 9 is not located in the section of the south polar region shown here, but a bit further to the North, in Schrödinger Basin. The representations of the lunar surface shown here are based on altimeter data from the Lunar Reconnaissance Orbiter. 
Credit: MPS/University of Oxford/NASA Ames Research Center/FDL/SETI Institute

The Moon’s polar regions are home to craters and other depressions that never receive sunlight. Today, a group of researchers led by the Max Planck Institute for Solar System Research (MPS) in Germany present the highest-resolution images to date covering 17 such craters in the journal Nature Communications. Craters of this type could contain frozen water, making them attractive targets for future lunar missions, and the researchers focused further on relatively small and accessible craters surrounded by gentle slopes. In fact, three of the craters have turned out to lie within the just-announced mission area of NASA's Volatiles Investigating Polar Exploration Rover (VIPER), which is scheduled to touch down on the Moon in 2023. Imaging the interior of permanently shadowed craters is difficult, and efforts so far have relied on long exposure times resulting in smearing and lower resolution. By taking advantage of reflected sunlight from nearby hills and a novel image processing method, the researchers have now produced images at 1-2 meters per pixel, which is at or very close to the best capability of the cameras.

The Moon is a cold, dry desert. Unlike the Earth, it is not surrounded by a protective atmosphere and water which existed during the Moon’s formation has long since evaporated under the influence of solar radiation and escaped into space. Nevertheless, craters and depressions in the polar regions give some reason to hope for limited water resources. Scientists from MPS, the University of Oxford and the NASA Ames Research Center have now taken a closer look at some of these regions.

Winged microchip is smallest-ever human-made flying structure

 

Northwestern University engineers have added a new capability to electronic microchips: flight.

About the size of a grain of sand, the new flying microchip (or “microflier”) does not have a motor or engine. Instead, it catches flight on the wind — much like a maple tree’s propeller seed — and spins like a helicopter through the air toward the ground.

By studying maple trees and other types of wind-dispersed seeds, the engineers optimized the microflier’s aerodynamics to ensure that it — when dropped at a high elevation — falls at a slow velocity in a controlled manner. This behavior stabilizes its flight, ensures dispersal over a broad area and increases the amount of time it interacts with the air, making it ideal for monitoring air pollution and airborne disease.

As the smallest-ever human-made flying structures, these microfliers also can be packed with ultra-miniaturized technology, including sensors, power sources, antennas for wireless communication and embedded memory to store data.

The research is featured on the cover of the Sept. 23 issue of Nature.

“Our goal was to add winged flight to small-scale electronic systems, with the idea that these capabilities would allow us to distribute highly functional, miniaturized electronic devices to sense the environment for contamination monitoring, population surveillance or disease tracking,” said Northwestern’s John A. Rogers, who led the device’s development. “We were able to do that using ideas inspired by the biological world. Over the course of billions of years, nature has designed seeds with very sophisticated aerodynamics. We borrowed those design concepts, adapted them and applied them to electronic circuit platforms.”

Tuesday, September 21, 2021

Rates of infectious disease linked to authoritarian attitudes and governance

 

According to psychologists, in addition to our physiological immune system we also have a behavioral one: an unconscious code of conduct that helps us stay disease-free, including a fear and avoidance of unfamiliar – and so possibly infected – people.

When infection risk is high, this “parasite stress” behavior increases, potentially manifesting as attitudes and even voting patterns that champion conformity and reject “foreign outgroups” – core traits of authoritarian politics.

A new study, the largest yet to investigate links between pathogen prevalence and ideology, reveals a strong connection between infection rates and strains of authoritarianism in public attitudes, political leadership and lawmaking.

While data used for the study predates COVID-19, University of Cambridge psychologists say that greater public desire for “conformity and obedience” as a result of the pandemic could ultimately see liberal politics suffer at the ballot box. The findings are published in the Journal of Social and Political Psychology.

Researchers used infectious disease data from the United States in the 1990s and 2000s and responses to a psychological survey taken by over 206,000 people in the US during 2017 and 2018. They found that the more infectious US cities and states went on to have more authoritarian-leaning citizens.

Electric Bees

 
Image: Pexels
New research has found that the electrical charge created by visiting bumblebees stimulates some flowers to release more of their sweet-smelling scent. This is the first time a plant has been shown to use the presence of pollinators as a cue to emit more of its attractive perfume - increasing its chances of being visited.

The tiny electrical charge carried by bees is thought to help pollen stick to them during flight but the team of researchers from the University of Bristol, Rothamsted Research, and Cardiff University found that it can also announce their presence to the flowers they visit. 

According to lead author, Dr Clara Montgomery, who was funded by the BBSRC, the trait possibly evolved in plants to maximize the effectiveness of the attractive chemicals they release. 

“Flowers have a limited supply of these scents, so it makes sense they only release them when their pollinators are around.  Essentially, it is only worth advertising when you know you have an audience. Other cues they might use, such as daylight or temperature can be unreliable, as it might also be windy or raining, which would reduce pollinator presence. 

“These scents are also used by insects that want to eat or lay eggs on the plant, so increasing their chances of only attracting pollinators is vital.”  

Monday, September 20, 2021

Physicists probe light smashups to guide future research

 
The Compact Muon Solenoid experiment at the
European Organization for Nuclear Research’s
Large Hadron Collider.
Photo courtesy of CERN
Hot on the heels of proving an 87-year-old prediction that matter can be generated directly from light, Rice University physicists and their colleagues have detailed how that process may impact future studies of primordial plasma and physics beyond the Standard Model.

“We are essentially looking at collisions of light,” said Wei Li, an associate professor of physics and astronomy at Rice and co-author of the study published in Physical Review Letters.

Rice physicists teamed with colleagues at Europe’s Large Hadron Collider to study matter-generating collisions of light. Researchers showed the departure angle of debris from the smashups is subtly distorted by quantum interference patterns in the light prior to impact. Illustration by 123rf.com

“We know from Einstein that energy can be converted into mass,” said Li, a particle physicist who collaborates with hundreds of colleagues on experiments at high-energy particle accelerators like the European Organization for Nuclear Research’s Large Hadron Collider (LHC) and Brookhaven National Laboratory’s Relativistic Heavy Ion Collider (RHIC).

Accelerators like RHIC and LHC routinely turn energy into matter by accelerating pieces of atoms near the speed of light and smashing them into one another. The 2012 discovery of the Higgs particle at the LHC is a notable example. At the time, the Higgs was the final unobserved particle in the Standard Model, a theory that describes the fundamental forces and building blocks of atoms.

Impressive as it is, physicists know the Standard Model explains only about 4% of the matter and energy in the universe. Li said this week’s study, which was lead-authored by Rice postdoctoral researcher Shuai Yang, has implications for the search for physics beyond the Standard Model.

Coral reef biodiversity predicted to shift as climate changes

 

Experimental set up at HIMB with mesocosms. (Photo credit: Chris Jury)
Coral reefs are among the most biologically diverse, complex and productive ecosystems on the planet. Most of coral reef biodiversity consists of tiny organisms living deep within the three-dimensional reef matrix. Although largely unseen, this diversity is essential to the survival and function of coral reef ecosystems, and many have worried that climate change will lead to dramatic loss of this diversity.

New research led by scientists at the University of Hawaiʻi at Mānoa reveals that the species which dominate experimental coral reef communities shift due to climate change, but the total biodiversity does not decline under future ocean conditions of warming and acidification predicted by the end of the century.

The study was published in the Proceedings of the National Academy of Science.

“Rather than the predicted collapse of biodiversity under ocean warming and acidification, we found significant changes in the relative abundance, but not the occurrence of species, resulting in a shuffling of coral reef community structure,” said Molly Timmers, lead author who conducted this study during her doctoral research at the Hawaiʻi Institute of Marine Biology (HIMB) at UH Mānoa’s School of Ocean and Earth Science and Technology (SOEST).

Important but overlooked organisms

“The tiny organisms living in the reef structure are known as the cryptobiota, which are analogous to the insects in a rainforest,” said Timmers. “They play essential roles in reef processes such as nutrient cycling, cementation and food web dynamics—they are an important diet of many of the fishes and invertebrates that make coral reef ecosystems so dynamic.”

Despite their critical importance to coral reef ecosystems, these cryptobiota are often overlooked in climate change research due to the challenges associated with surveying them using visual census and in identifying this highly diverse and understudied community.

“As a result, our perceptions of coral reef biodiversity across marine gradients and how biodiversity will respond to climatic change has been primarily based on a handful of observable surface-dwelling taxa, such as corals and fish,” said Timmers.

Experimental designs

To assess the responses of the understudied cryptobiota to future ocean conditions, Timmers and colleagues at HIMB devised an experiment wherein tiered settlement plates were placed in experimental flow-through tanks. These mesocosms received unfiltered seawater from a nearby reef slope off the shore of HIMB and were treated with end-of-the-century predicted ocean warming and/or ocean acidification conditions. After two years of exposure, the team examined the organismal groups that had developed on the settlement plates using DNA metabarcoding techniques.

“This two-year experimental mesocosm study is unprecedented for climate change research and is the first one to examine the diversity of the entire coral reef community from microbes and algae to the corals and fishes,” said Chris Jury, the author who developed and maintained the mesocosm system.

Source/Credit: University of Hawaiʻi

en092021_01

Major advance in race for SARS-CoV-2 inhibitor drugs

 
Mpro dimer from SARS-CoV-2 in complex with the inhibitory peptide (13)
 following 100 ns of molecular dynamics simulation.
Credit: University of Bristol
A new advance towards the development of drugs specifically designed to inhibit a key SARS-CoV-2 enzyme is reported in the Royal Society of Chemistry's leading journal, Chemical Science. The international team, led by scientists from the Universities of Oxford and Bristol, has designed new peptide molecules and shown that they block (inhibit) the virus’s main protease [Mpro] - a prominent SARS-CoV-2 drug target.

Once SARS-CoV-2 invades a healthy human cell, the virus's own genetic material commandeers the infected cell's machinery, forcing it to make new copies of the virus. A vital step in this viral life cycle involves cutting a very long 'polyprotein' into its constituent viral proteins. SARS-CoV-2 has two molecular machines called protease enzymes that act as 'molecular scissors'. One of these, called the main protease, or 'Mpro' for short, has the vital role of chopping up the polyprotein, cutting it at 11 different places.

In the early days of the pandemic lockdown, Professor Garrett Morris at the University of Oxford, brought together a group of scientists to try to understand Mpro, with the aim of helping develop drugs against COVID-19. Meeting weekly over many months by Zoom, this group combined their computational and experimental expertise, and grew to include scientists from several different countries. From Bristol, this included Professors Adrian Mulholland and Jim Spencer, Dr Deborah Shoemark, PhD student Becca Walters, and other colleagues. Using a wide array of computational molecular modelling techniques including interactive molecular dynamics in virtual reality, quantum mechanics, peptide design and protein-ligand interaction analysis, the scientists were able to build an atomic level picture of the structure, dynamics and interactions of Mpro.

From these models, the team were able to find how the viral Mpro 'molecular scissors' work. They then designed new peptides, which are short pieces of protein, as inhibitors, to bind tightly to Mpro and prevent it from working, stopping the virus dead in its tracks. But did they work?

All 11 protein cut sites and four of these designed peptides were synthesized and tested in the Chemistry Research Laboratory at the University of Oxford. Experiments, led by Professor Chris Schofield at Oxford, showed that the novel peptides - designed by Dr Deborah Shoemark, with software developed in Bristol - not only bound to the molecular scissors, but they outcompeted the natural protein cut sites and so inhibited Mpro.

Adrian Mulholland, Professor of Chemistry at the University of Bristol and one of the study's lead authors, said: "Despite the development of successful vaccines in record time, new antiviral drugs are desperately needed. To date there are no drugs designed specifically to target COVID-19. Computational molecular modelling can really help with this. As we’ve shown here, computational design can produce molecules that actually stop the Mpro enzyme from working."

Dr Deborah Shoemark, Senior Research Associate (Biomolecular Modelling) in the School of Biochemistry, added: "It has been great to work together on this, combining our ideas and methods to get a really detailed picture of how this viral enzyme works – and to design molecules that actually stop it from working. Understanding Mpro specificity provides the potential to exploit vulnerabilities of the SARS-CoV-2 virus that may provide routes to new antivirals."

Professor Mulholland added: "This collaboration has really shown how sharing of models, data and expertise can help get understanding and make progress much more quickly. Garrett (Morris) built a fantastic team, and it has been exciting to work together on this. It’s how science should be done – particularly in the face of pressing problems like the COVID-19 pandemic."

The study was funded through several grants including support from the EPSRC, BBSRC and the Wellcome Trust.

Source/Credit: University of Bristol

scn092021_04

High-speed alloy creation might revolutionize hydrogen’s future

 
Researchers from Sandia National Laboratories and international collaborators used computational approaches, including explainable machine learning models, to elucidate new high-entropy alloys with attractive hydrogen storage properties and direct laboratory synthesis and validation.

A Sandia National Laboratories team of materials scientists and computer scientists, with some international collaborators, have spent more than a year creating 12 new alloys — and modeling hundreds more — that demonstrate how machine learning can help accelerate the future of hydrogen energy by making it easier to create hydrogen infrastructure for consumers.

Vitalie Stavila, Mark Allendorf, Matthew Witman and Sapan Agarwal are part of the Sandia team that published a paper detailing its approach in conjunction with researchers from Ångström Laboratory in Sweden and Nottingham University in the United Kingdom.

“There is a rich history in hydrogen storage research and a database of thermodynamic values describing hydrogen interactions with different materials,” Witman said. “With that existing database, an assortment of machine-learning and other computational tools, and state-of-the art experimental capabilities, we assembled an international collaboration group to join forces on this effort. We demonstrated that machine learning techniques could indeed model the physics and chemistry of complex phenomena which occur when hydrogen interacts with metals.”

Having a data-driven modeling capability to predict thermodynamic properties can rapidly increase the speed of research. In fact, once constructed and trained, such machine learning models only take seconds to execute and can therefore rapidly screen new chemical spaces: in this case 600 materials that show promise for hydrogen storage and transmission.

“This was accomplished in only 18 months,” Allendorf said. “Without the machine learning it could have taken several years. That’s big when you consider that historically it takes something like 20 years to take a material from lab discovery to commercialization.”

Autistic individuals are more likely to be LGBTQ+

The findings have important implications for the healthcare and support of autistic individuals. The results are published in the journal Autism Research.  

For many years it was wrongly assumed that autistic individuals are uninterested in sexual or romantic relationships, but this is not the case. In recent years, small studies have suggested that autistic individuals are more likely to experience a wider diversity of sexual orientations and are less likely to have sexually transmitted infections (STIs). However, the existing evidence has been limited in size and scope.

In the largest study to date on these topics, the team at the Autism Research Center used an anonymous, self-report survey to study the sexual activity, sexual orientation, and sexual health of autistic adults. Overall, 1,183 autistic and 1,203 non-autistic adolescents and adults (aged 16-90 years) provided information about their sexual activity, sexual orientation, and medical history of STIs.

The results showed that the majority of autistic adults (70% of autistic males and 76% of autistic females) engage in sexual activity—although they do so to a lesser degree than their non-autistic peers (89% of both non-autistic males and females report engaging in sexual activity). In contrast to previous findings, the results also found that there were no differences in likelihood of ever contracting an STI, or the age at which participants first engaged in sexual activity, between autistic and non-autistic individuals.

In addition, the study found that autistic adults and adolescents are approximately eight times more likely to identify as asexual and ‘other’ sexuality than their non-autistic peers. And there were sex differences in sexual orientation: autistic males are 3.5 times more likely to identify as bisexual than non-autistic males, whereas autistic females are three times more likely to identify as homosexual than autistic females.

When comparing autistic females and males directly, autistic females were more likely to be sexually active; more likely to identify as asexual, bisexual, and ‘other’ sexuality; and were less likely to identify as heterosexual.

Elizabeth Weir, a PhD candidate at the Autism Research Center in Cambridge, and the lead researcher of the study, said: “Understanding the intersectional identities of autistic individuals who are asexual, bisexual, homosexual, or ‘other’ sexuality is key. It is particularly important that healthcare providers and educators use language that is affirming and accepting of all sexual orientations and gender identities when providing sexual education and sexual health screening checks to autistic and non-autistic people alike.” 

Dr Carrie Allison, Director of Strategy at the Autism Research Center and a member of the team, said: “We must ensure that autistic individuals are receiving equal access to healthcare and support in their choices in their personal lives, to enjoy fulfilling lives and good mental health.”

Professor Simon Baron-Cohen, Director of the Autism Research Center and a member of the team, said: “This new study is an important example of applied health research with policy relevance for health and social care services.”

Source/Credit: University of Cambridge

scn092021_02

Pandemic Has Triggered a Cycle of Mental Health Struggles and Physical Inactivity

Photo by Liza Summer from Pexels

 A large, multi-state study highlights how the COVID-19 pandemic has created a cyclical public health problem by both exacerbating mental health challenges and making it more difficult for people to maintain physical activity. The study also reveals that lower-income households struggled more with both mental health challenges and maintaining physical activity levels.

“We know that physical activity is important for helping people maintain their mental health, but this study reveals the unforgiving cycle that the pandemic has imposed on many people,” says Lindsey Haynes-Maslow, co-author of the study and an associate professor of agricultural and human sciences at North Carolina State University.

“The pandemic has increased psychological distress, which makes it more difficult for people to maintain their physical activity levels. This, in turn, further hurts their mental health, which makes them less likely to be active, and so on. Once you get on this roller coaster ride, it’s hard to get off. And all of this is exacerbated by the pandemic making it harder for people to find safe spaces in which to exercise.”

For this study researchers were focused on two questions: How is the pandemic influencing physical activity and mental health status? And how, if at all, do physical activity and mental health status relate to each other?

To address those questions, the researchers conducted an in-depth, online survey of 4,026 adults in Louisiana, Montana, North Carolina, Oregon and West Virginia. The survey was conducted between April and September of 2020.

The researchers found that the more physically active people were, the better their mental health status. That held true even when accounting for an individual’s race/ethnicity, household income and other socioeconomic demographic variables.

Treatments that may protect eggs against ageing

 
The spindle is responsible for separating the chromosomes equally when the oocyte goes through specialist meiotic cell divisions. The spindle is made of fibers called microtubules (green) to which the chromosomes (red) are attached. The use of MitoQ or BGP-15 improves the organization of the microtubules and alignment of the chromosomes to the center of the spindle. The oocyte has an improved chance of properly separating chromosomes and thereby avoiding aneuploidy when the egg is activated by the fertilizing sperm.

A woman’s fertility decreases as she ages – largely because of fewer healthy oocytes or eggs, and those that are available for fertilization often have chromosomal abnormalities which result in a higher incidence of miscarriage and genetic disorders such as Down’s syndrome.

Now a team at the Monash Biomedicine Discovery Institute (BDI) and Robinson Research Institute, collaborating with Monash IVF, has found a potential treatment that targets mitochondria to help prevent these chromosomal errors in mouse and human eggs.

In a paper published in the journal Human Reproduction, researchers led by Professors John Carroll and Rebecca Robker used two mitochondria-targeted therapeutics – called MitoQ and BGP-15 – which appeared to protect eggs from the chromosomal disturbances seen in older or abnormal eggs.

In particular, the addition of these agents improved how immature human eggs organize their chromosomes when matured in laboratory conditions. If this effect holds true for eggs maturing in the body it may also prevent chromosomal abnormalities in human eggs, effectively protecting them against miscarriage or genetic consequences such as Down’s syndrome.

The first author, Dr Usama Al-Zubaidi from the Monash BDI says: “Given that increasing numbers of women delay childbearing there is an imperative to improve fertility and reduce miscarriage and chromosomal anomalies associated with maternal ageing.”

The study identified “two excellent candidates that may one day help to improve fertility in older women.”

The age-related decline in fertility is strongly attributed to ovarian ageing, diminished ovarian reserves, and a decline in oocyte quality. One cause of this is due to increased oxidative stress within the oocytes.

Mitochondria – whether in an oocyte or any other cell in the body - use oxygen to create energy and one of the by-products is the production of free radicals. Oocytes are made during fetal life so have a lot of time to accumulate oxidative damage. Also, as eggs age, their defenses against oxidative damage become compromised. MitoQ and BGP-15 appear to be protecting eggs at least in part by improving mitochondrial function and minimizing oxidative stress during critical periods when the eggs are dividing their chromosomes.

Next steps involve finding the best conditions for these therapies to work when eggs are maturing inside the ovary and if the effects seen on chromosome organization translate into healthier eggs that have a better chance to develop into healthy pregnancies.

“Increasingly, fertility science is turning to therapies that specifically target these mitochondria with a view to preventing the chromosomal abnormalities that occur due to ageing and oxidative stress,” Professor Carroll said.

“Our study looked at two of these candidates to see whether they in fact made a difference to older eggs from humans and mice and found they can make the older eggs ‘younger’ again.” They were very effective at one level, but we are now working on seeing if this approach can work in patients.”

Both MitoQ and BGP-15 are used in humans already, – with MitoQ used to treat age associated hypertension while BGP-15 has been used in clinical trials for diabetes where it was given orally.

Medical Director Monash IVF, Professor Luk Rombauts said that improving function of the mitochondria, which he calls “the little energy factories within the eggs”, is one of the potential strategies to enhance egg quality and reproductive success, even more so in older women. “Monash IVF is keen to continue its collaboration with Professor John Carroll’s lab to find meaningful ways to turn this research into new treatment strategies.”

Source/Credit: Monash University

scn092021_01

Sunday, September 19, 2021

Plasma doesn’t help severely ill COVID-19 patients

 

Giving severely ill COVID-19 patients a transfusion of blood from donors who have already recovered from the virus did not help them improve — and in some cases made them sicker, according to a major Canadian-led clinical trial reporting results in Nature Medicine.

“Convalescent plasma had been found to boost immunity in patients infected with some other viral entities, including SARS, in the past,” said local principal investigator Susan Nahirniak, professor of laboratory medicine and pathology in the University of Alberta’s Faculty of Medicine & Dentistry and medical/scientific lead for the Alberta Precision Laboratories transfusion and transplantation medicine program.

“But this trial did not demonstrate any benefit in terms of changing the course for patients who were admitted to hospital needing oxygen for SARS-CoV-2,” Nahirniak said. “It did not prevent intubation or death.”

The randomized controlled study followed 921 COVID-19 patients in Canada, the United States and Brazil who were admitted to hospital within 12 days of the onset of their respiratory symptoms. Two-thirds (614 patients) received convalescent plasma transfusions and one-third (307 patients) did not.

Of the convalescent plasma group, 199 of the patients required intubation or died, while 86 patients in the control group had these outcomes. Patients in the convalescent arm also experienced more serious adverse events such as needing more oxygen or worsening respiratory failure. The trial was terminated early when researchers realized the outcomes were not positive.

Varying immune responses

Another finding of the trial was that the level of neutralizing antibodies, or titres, in the blood of recovered COVID-19 patients was highly variable, which may have implications for how the population responds to vaccination.

“We were finding that several of the people who had signed up as donors were dropping their titres fairly quickly, so maintaining that donor pool was a challenge,” said Nahirniak. 

“It is proof that just because you’ve had COVID once doesn’t mean you can’t have it again,” she said. “It reinforces the need to be vigilant and possibly give boosters, similar to what we do with influenza.”

At the same time, the research team found that some donors had higher levels of non-functional antibodies against the virus’s spike protein. They reported that recipients of this plasma seemed to have poorer outcomes and recommended continued research on the prevalence and impact of these antibodies.

“If COVID is part of our lives going forward and there are certain antibodies that could be potentially harmful, is that something we need to be testing for and screening out for plasma donors?” Nahirniak posited.

Nahirniak noted that participating in the trial during the early days of the COVID-19 pandemic, when few treatments had been identified, helped to boost morale for both patients and clinical staff.

“We felt like we could do nothing, so at least this was an option, identifying the patients early on and getting them monitored.”

Nahirniak noted she was surprised by the disappointing results, but “that’s why we do a trial — we anticipated better success against the virus.”

The study was funded by the Canadian Institutes of Health Research and numerous local health agencies, including the University of Alberta Hospital Foundation and Alberta Health Services.

Source/Credit: University of Alberta

scn091921_02

Targeting tickborne diseases

"Benedict Khoo" Source: University of Minnesota

For Benedict Khoo, making a breakthrough discovery in health-related research doesn’t mean much if it can’t be put to use bettering people’s lives.

For Benedict Khoo, making a breakthrough discovery in health-related research doesn’t mean much if it can’t be put to use bettering people’s lives.

He knows from experience. When he worked in a research lab in Ohio, he felt “divorced from having a tangible impact,” due largely to regulatory hurdles in the field.

But that all changed when he turned to public health. There, he says, however his work turns out, he learns something that could help people make their own health decisions or influence policies. 

“That’s what drove me—to have that impact on the world and feel like I’m doing something,” says Khoo, a doctoral student in the School of Public Health (SPH). 

He found his niche with Jonathan Oliver, an assistant professor of environmental health sciences in SPH, who is now his adviser. Together they study the prevalence of Lyme disease and other tickborne diseases of humans, in a study area comprising Minnesota and adjacent northern Iowa and western Wisconsin. 

Saturday, September 18, 2021

How a plant virus could protect and save your lungs from metastatic cancer

 
Nanoparticles engineered from the cowpea mosaic virus have shown efficacy
in treating and greatly reducing the spread of metastatic cancers in the lungs of mice.
Using a virus that grows in black-eyed pea plants, nanoengineers at the University of California San Diego developed a new treatment that could keep metastatic cancers at bay from the lungs. The treatment not only slowed tumor growth in the lungs of mice with either metastatic breast cancer or melanoma, it also prevented or drastically minimized the spread of these cancers to the lungs of healthy mice that were challenged with the disease.

The research was published in the journal Advanced Science.

Cancer spread to the lungs is one of the most common forms of metastasis in various cancers. Once there, it is extremely deadly and difficult to treat.

Researchers at the UC San Diego Jacobs School of Engineering developed an experimental treatment that combats this spread. It involves a bodily injection of a plant virus called the cowpea mosaic virus. The virus is harmless to animals and humans, but it still registers as a foreign invader, thus triggering an immune response that could make the body more effective at fighting cancer.

The idea is to use the plant virus to help the body’s immune system recognize and destroy cancer cells in the lungs. The virus itself is not infectious in our bodies, but it has all these danger signals that alarm immune cells to go into attack mode and search for a pathogen, said Nicole Steinmetz, professor of nanoengineering at UC San Diego and director of the university’s Center for Nano-ImmunoEngineering.

To draw this immune response to lung tumors, Steinmetz’s lab engineered nanoparticles made from the cowpea mosaic virus to target a protein in the lungs. The protein, called S100A9, is expressed and secreted by immune cells that help fight infection in the lungs. And there is another reason that motivated Steinmetz’s team to target this protein: overexpression of S100A9 has been observed to play a role in tumor growth and spread.

“For our immunotherapy to work in the setting of lung metastasis, we need to target our nanoparticles to the lung,” said Steinmetz. “Therefore, we created these plant virus nanoparticles to home in on the lungs by making use of S100A9 as the target protein. Within the lung, the nanoparticles recruit immune cells so that the tumors don’t take.”

“Because these nanoparticles tend to localize in the lungs, they can change the tumor microenvironment there to become more adept at fighting off cancer—not just established tumors, but future tumors as well,” said Eric Chung, a bioengineering Ph.D. student in Steinmetz’s lab who is one of the co-first authors on the paper.

To make the nanoparticles, the researchers grew black-eyed pea plants in the lab, infected them with cowpea mosaic virus, and harvested the virus in the form of ball-shaped nanoparticles. They then attached S100A9-targeting molecules to the surfaces of the particles.

The researchers performed both prevention and treatment studies. In the prevention studies, they first injected the plant virus nanoparticles into the bloodstreams of healthy mice, and then later injected either triple negative breast cancer or melanoma cells in these mice. Treated mice showed a dramatic reduction in the cancers spreading to their lungs compared to untreated mice.

In the treatment studies, the researchers administered the nanoparticles to mice with metastatic tumor in their lungs. These mice exhibited smaller lung tumors and survived longer than untreated mice.

What’s remarkable about these results, the researchers point out, is that they show efficacy against extremely aggressive cancer cell lines. “So, any change in survival or lung metastasis is pretty striking,” said Chung. “And the fact that we get the level of prevention that we do is really, really amazing.”

Steinmetz envisions that such a treatment could be especially helpful to patients after they have had a cancerous tumor removed. “It wouldn’t be meant as an injection that’s given to everyone to prevent lung tumors. Rather, it would be given to patients who are at high risk of their tumors growing back as a metastatic disease, which often manifests in the lung. This would offer their lungs protection against cancer metastasis,” she said.

Before the new treatment can reach that stage, the researchers need to do more detailed immunotoxicity and pharmacology studies. Future studies will also explore combining this with other treatments such as chemotherapy, checkpoint drugs or radiation.

Source/Credit: UC San Diego Jacobs School of Engineering

scn091821_01


Friday, September 17, 2021

Black Hole Snacks on a Star

 

This illustration shows a glowing stream of material from a star, torn to shreds as it was being devoured by a supermassive black hole. The feeding black hole is surrounded by a ring of dust, not unlike the plate of a toddler is surrounded by crumbs after a meal. NASA/JPL-Caltech

While black holes and toddlers don't seem to have much in common, they are remarkably similar in one aspect: Both are messy eaters, generating ample evidence that a meal has taken place.

But whereas one might leave behind droppings of pasta or splatters of yogurt, the other creates an aftermath of mind-boggling proportions. When a black hole gobbles up a star, it produces what astronomers call a "tidal disruption event." The shredding of the hapless star is accompanied by an outburst of radiation that can outshine the combined light of every star in the black hole's host galaxy for months, even years. 

In a paper published in The Astrophysical Journal, a team of astronomers led by Sixiang Wen, a postdoctoral research associate at the University of Arizona Steward Observatory, use the X-rays emitted by a tidal disruption event known as J2150 to make the first measurements of both the black hole's mass and spin. This black hole is of a particular type – an intermediate-mass black hole – which has long eluded observation.

"The fact that we were able to catch this black hole while it was devouring a star offers a remarkable opportunity to observe what otherwise would be invisible," said Ann Zabludoff, UArizona professor of astronomy and co-author on the paper. "Not only that, by analyzing the flare we were able to better understand this elusive category of black holes, which may well account for the majority of black holes in the centers of galaxies."

Study links severe COVID-19 to increase in self-attacking antibodies

 

Hospitalized COVID-19 patients are substantially more likely to harbor autoantibodies — antibodies directed at their own tissues or at substances their immune cells secrete into the blood — than people without COVID-19, according to a new study.

Autoantibodies can be early harbingers of full-blown autoimmune disease.

“If you get sick enough from COVID-19 to end up in the hospital, you may not be out of the woods even after you recover,” said PJ Utz, MD, professor of immunology and rheumatology at Stanford Medicine.

Utz shares senior authorship of the study, which was published Sept. 14 in Nature Communications, with Chrysanthi Skevaki, MD, PhD, instructor of virology and laboratory medicine at Philipps University Marburg in Germany, and Eline Luning Prak, MD, PhD, professor of pathology and laboratory medicine at the University of Pennsylvania. The study’s lead authors are Sarah Chang, a former technician in Utz’s lab; recent Stanford undergraduate Allen Feng, now a technician in the Utz lab; and senior research investigator Wenshao Meng, PhD, and postdoctoral scholar Sokratis Apostolidis, MD, both at the University of Pennsylvania.

The scientists looked for autoantibodies in blood samples drawn during March and April of 2020 from 147 COVID-19 patients at the three university-affiliated hospitals and from a cohort of 48 patients at Kaiser Permanente in California. Blood samples drawn from other donors prior to the COVID-19 pandemic were used as controls.

The researchers identified and measured levels of antibodies targeting the virus; autoantibodies; and antibodies directed against cytokines, proteins that immune cells secrete to communicate with one another and coordinate their overall strategy.

Upward of 60% of all hospitalized COVID-19 patients, compared with about 15% of healthy controls, carried anti-cytokine antibodies, the scientists found. This could be the result of immune-system overdrive triggered by a virulent, lingering infection. In the fog of war, the abundance of cytokines may trip off the erroneous production of antibodies targeting them, Utz said.

If any of these antibodies block a cytokine’s ability to bind to its appropriate receptor, the intended recipient immune cell may not get activated. That, in turn, might buy the virus more time to replicate and lead to a much worse outcome.

Cartilage Resurfacing Implant Reduces Pain, Restores Hip Joint Function in Dogs

 

Chinni Credit: Heidi-Ann Fourkiller
A textile-based implant containing cartilage derived from stem cells reduced pain and restored hip joint function to baseline levels in a study of dogs with symptoms of moderate osteoarthritis. The study, led by researchers at North Carolina State University, Washington University in St. Louis and Cytex Therapeutics Inc., could be a significant first step toward preventative, less invasive joint resurfacing in dogs and humans.

In humans – and in dogs – a single, millimeter-thick layer of cartilage can mean the difference between an active lifestyle or painful osteoarthritis. That tiny cap of cartilage is what protects joint surfaces and allows the bones to glide over one another smoothly. Age or joint injury can cause the cartilage to degrade, leading to osteoarthritis and progressive joint pain.

“One of the holy grails of orthopedics is to replace cartilage, but there hasn’t been an effective way to do it,” says Duncan Lascelles, professor of surgery and translational pain research and management at NC State and co-corresponding author of the research. “Most of the focus is on replacing or restoring the cartilage surface with artificial materials, but regenerating cartilage isn’t possible right now. And many of the artificial products in use don’t integrate with the body.”

Farshid Guilak, the Mildred B. Simon Professor of Orthopedic Surgery at Washington University and Shriners Hospitals for Children, along with Bradley Estes and Frank Moutos, founded Cytex Therapeutics to develop an implant that could replace damaged or missing cartilage. The implant is made using a unique combination of manufacturing techniques that result in a part textile, part 3D-printed structure, which can be seeded with the patient’s own stem cells.

Cancer Cells’ Unexpected Genetic Tricks for Evading the Immune System

 

Defective versions of genes known as tumor suppressors can help cancer cells (melanoma shown) evade the immune system. Until now, scientists believed these genes’ main role was encouraging tumor growth. Credit: Julio C. Valencia, NCI Center for Cancer Research/CC BY-NC 2.0

In a surprising new finding in mice, researchers have discovered that many genes linked to human cancer block the body’s natural defense against malignancies.

Hundreds of cancer-linked genes play a different role in causing disease than scientists had expected.

So-called tumor suppressor genes have long been known to block cell growth, preventing cancerous cells from spreading. Mutations in these genes, scientists believed, thus allow tumors to flourish unchecked.

Now, Howard Hughes Medical Institute Investigator Stephen Elledge’s team has uncovered a surprising new action for many of these defective genes. More than 100 mutated tumor suppressor genes can prevent the immune system from spotting and destroying malignant cells in mice, Elledge, a geneticist at Brigham and Women’s Hospital, reports September 16, 2021, in the journal Science. “The shock was that these genes are all about getting around the immune system, as opposed to simply saying ‘grow, grow, grow!’” he says.

Conventional wisdom had suggested that, for the vast major of tumor suppressor genes, mutations allow cells to run amok, growing and dividing uncontrollably. But that explanation had some gaps. For example, mutated versions of many of these genes don’t actually cause rampant growth when put into cells in a petri dish. And scientists couldn’t explain why the immune system, which is normally highly proficient at attacking abnormal cells, doesn’t do more to nip new tumors in the bud.

“The shock was that these genes are all about getting around the immune system, as opposed to simply saying ‘grow, grow, grow!’”
Steve Elledge, HHMI Investigator at Brigham and Women’s Hospital

Elledge’s new paper offers some answers. His team probed the effects of 7,500 genes, including genes known to be involved in human cancer. A third or more of those cancer-linked genes, when mutated, trigger mechanisms that prevent the immune system from rooting out tumors, often in a tissue-specific manner.

“These results reveal a fascinating and unexpected relationship between tumor suppressor genes and the immune system,” says HHMI Investigator Bert Vogelstein, a cancer geneticist at the Johns Hopkins University who was not involved in the research.

Reforestation could help save coral reefs from catastrophe

Increasing reforestation efforts in coastal regions could substantially reduce the amount of sediment run-off reaching coral reefs and improve their resilience, a University of Queensland-led study has found.

The study analyzed more than 5,500 coastal areas from around the world and found that nearly 85 per cent of them leached sediment to coral reefs, the second most serious threat facing the world’s reefs behind climate change.

Dr Andrés Suárez-Castro from UQ’s Centre for Biodiversity and Conservation Science said it was important to address the issue of sediment runoff if efforts to reduce the human impact on reefs were to be successful.

“Increased sedimentation can cause aquatic ecosystems to be more sensitive to heat stress, which decreases the resilience of corals to pressures caused by climate change,” Dr Suárez-Castro said.

“If the link between the land and sea is not recognized and managed separately, any future efforts to conserve marine habitats and species are likely to be ineffective.”

Excess sediment runoff from land clearing and agrichemical pollution along coastlines can increase sediment transport to coastal waters.

Dr Suárez-Castro said one of the impacts of sediment runoff on coral reefs is a massive reduction in light levels that were key for coral and sea grass growth and reproduction.

Image credit: Diego Correa Gomez
One solution proposed by Dr Suárez-Castro and his team is for countries to commit to land and forest restoration in coastal regions, which will help reduce the amount of sediment runoff.

“Reforestation is hugely important as it maintains the stability of soils that are vital in limiting erosion risk – it also helps to trap more sediments and prevent them from reaching aquatic systems,” he said.

“Building coral resilience through reducing sediment and pollution is also key to improving a coral reef’s potential for recovery.

“If land management to reduce sediment runoff does not become a global priority, it will become increasingly challenging, if not impossible, to protect marine ecosystems in the face of climate change.”

The researchers said that while the benefits of land restoration activities were clear, it would be a challenge to get countries and governments to commit to restoration activities.

“It’s encouraging to see many countries with high coral diversity committing large areas to land restoration, however the cost of reforestation, as well as political and social barriers may make it difficult to achieve these ambitious goals,” Dr Suárez-Castro said.

“If an average of 1000 hectares of forest was restored per coastal basin, land-based sediments reaching coral reefs could be cut by an average of 8.5 per cent among 63,000 square kilometers of reefs.”

Dr Suárez-Castro and his team hope that local authorities can use their results to identify areas where reforestation can have the highest benefit on coral reefs.

“Our approach can be adapted with local data to identify optimal actions for preserving ‘win-wins’ for multiple ecosystems spanning the land and sea,” Dr Suárez-Castro said.

“Several global initiatives such as the Paris Climate Agreement are bringing forest restoration to the forefront of global conservation discussions and our hope is that our study can facilitate more informed and educated conversations around the importance of a more integrated land-sea approach.”

The research has been published in Global Change Biology

Source/Credit: University of Queensland

en091721_01

Wednesday, September 15, 2021

Have we detected dark energy?

 

A new study, led by researchers at the University of Cambridge and reported in the journal Physical Review D, suggests that some unexplained results from the XENON1T experiment in Italy may have been caused by dark energy, and not the dark matter the experiment was designed to detect.

They constructed a physical model to help explain the results, which may have originated from dark energy particles produced in a region of the Sun with strong magnetic fields, although future experiments will be required to confirm this explanation. The researchers say their study could be an important step toward the direct detection of dark energy.

Everything our eyes can see in the skies and in our everyday world – from tiny moons to massive galaxies, from ants to blue whales – makes up less than five percent of the universe. The rest is dark. About 27% is dark matter – the invisible force holding galaxies and the cosmic web together – while 68% is dark energy, which causes the universe to expand at an accelerated rate.

“Despite both components being invisible, we know a lot more about dark matter, since its existence was suggested as early as the 1920s, while dark energy wasn’t discovered until 1998,” said Dr Sunny Vagnozzi from Cambridge’s Kavli Institute for Cosmology, the paper’s first author. “Large-scale experiments like XENON1T have been designed to directly detect dark matter, by searching for signs of dark matter ‘hitting’ ordinary matter, but dark energy is even more elusive.”

To detect dark energy, scientists generally look for gravitational interactions: the way gravity pulls objects around. And on the largest scales, the gravitational effect of dark energy is repulsive, pulling things away from each other and making the Universe’s expansion accelerate.

About a year ago, the XENON1T experiment reported an unexpected signal, or excess, over the expected background. “These sorts of excesses are often flukes, but once in a while they can also lead to fundamental discoveries,” said Dr Luca Visinelli, a researcher at Frascati National Laboratories in Italy, a co-author of the study. “We explored a model in which this signal could be attributable to dark energy, rather than the dark matter the experiment was originally devised to detect.”

At the time, the most popular explanation for the excess were axions – hypothetical, extremely light particles – produced in the Sun. However, this explanation does not stand up to observations, since the amount of axions that would be required to explain the XENON1T signal would drastically alter the evolution of stars much heavier than the Sun, in conflict with what we observe.

We are far from fully understanding what dark energy is, but most physical models for dark energy would lead to the existence of a so-called fifth force. There are four fundamental forces in the universe, and anything that can’t be explained by one of these forces is sometimes referred to as the result of an unknown fifth force.

However, we know that Einstein’s theory of gravity works extremely well in the local universe. Therefore, any fifth force associated to dark energy is unwanted and must be ‘hidden’ or ‘screened’ when it comes to small scales, and can only operate on the largest scales where Einstein's theory of gravity fails to explain the acceleration of the Universe. To hide the fifth force, many models for dark energy are equipped with so-called screening mechanisms, which dynamically hide the fifth force.

Vagnozzi and his co-authors constructed a physical model, which used a type of screening mechanism known as chameleon screening, to show that dark energy particles produced in the Sun’s strong magnetic fields could explain the XENON1T excess.

“Our chameleon screening shuts down the production of dark energy particles in very dense objects, avoiding the problems faced by solar axions,” said Vagnozzi. “It also allows us to decouple what happens in the local very dense Universe from what happens on the largest scales, where the density is extremely low.”

The researchers used their model to show what would happen in the detector if the dark energy was produced in a particular region of the Sun, called the tachocline, where the magnetic fields are particularly strong.

“It was really surprising that this excess could in principle have been caused by dark energy rather than dark matter,” said Vagnozzi. “When things click together like that, it’s really special.”

Their calculations suggest that experiments like XENON1T, which are designed to detect dark matter, could also be used to detect dark energy. However, the original excess still needs to be convincingly confirmed. “We first need to know that this wasn’t simply a fluke,” said Visinelli. “If XENON1T actually saw something, you’d expect to see a similar excess again in future experiments, but this time with a much stronger signal.”

If the excess was the result of dark energy, upcoming upgrades to the XENON1T experiment, as well as experiments pursuing similar goals such as LUX-Zeplin and PandaX-xT, mean that it could be possible to directly detect dark energy within the next decade.

Source/Credit: University of Cambridge / Sarah Collins

pyh091521_01

Region of 'Super Corals' Discovered

Corals found in an area of the ocean with extremely high levels of
Carbon Dioxide in the Verde Island Passage in the Philippines.
 In 2019, a hydrology professor at The University of Texas at Austin set out on a research project to see if he could identify harmful nutrients flowing through groundwater into a delicate coral reef sanctuary in the Philippines. He achieved this goal, but following the long history of accidental scientific discoveries, he instead stumbled upon something completely unexpected: a region of possible “super corals” that are thriving despite high levels of carbon dioxide.

The findings based on the 2019 field work were published in August in the journal ACS ES&T Water.

For the first time, the UT Austin professor, Bayani Cardenas, and a team of international researchers were able to attribute the source of CO2 and other gases and nutrients in seawater at this location to groundwater, a finding that the researchers believe shows how the undersea reef environment can be vulnerable to the way communities discharge wastewater, agricultural runoff and other byproducts into the sea.

“This is an unseen vulnerability,” said Cardenas, a professor in the Department of Geological Sciences at the UT Jackson School of Geosciences. “We’ve been able to show with this site that groundwater is part of these delicate coral reef environments. There is a connection, and that’s still not as accepted in science and in many parts of the world.”

More than that, Cardenas said the research has led to new questions — and new research proposals — about the super corals they found that could be replicated elsewhere in the coming years as global CO2 levels are expected to rise.

Coral reefs have long been suffering due to climate change, most notably during a global coral bleaching event from 2014 to 2017 that caused heat stress to 75% of the world’s reefs, according to the American Meteorological Society. Yet the coral-filled area Cardenas studied in the Verde Island Passage in the Philippines, a region so vibrant and diverse that he refers to it as the “Amazon of the ocean,” is thriving despite the vast amounts of CO2 being pumped in from groundwater.

Lead author Rogger E. Correa, a researcher at Southern Cross University in Australia, estimated that groundwater is pumping about 989 grams of CO2 per square meter per year into the area they studied, which is known as “Twin Rocks” and borders a chain of volcanoes. That’s the equivalent of parking two cars on the seabed and letting them emit carbon dioxide for a full year on every hectare of reef.

To distinguish groundwater from seawater, the scientists submerged devices that measure the levels of CO2 and radon 222, a naturally occurring radioactive isotope that is found in local groundwater but not in open ocean water. The measurement technique was developed by co-author Isaac Santos, a professor at the University of Gothenburg in Sweden.

This work follows a 2020 study conducted by Cardenas where he discovered CO2 bubbling up from the seafloor off an area of the Philippine coast so dramatically that he dubbed it “Soda Springs.”

The end result from the latest investigation is an entire region of coral reefs that must be studied more closely, said Cardenas, who is a geoscientist and not a coral researcher.

Adina Paytan, a research scientist at the Institute of Marine Sciences at the University of California, Santa Cruz, who was not associated with the study, warned that other human-made stressors, including sedimentation, overfishing and pollution, can still doom coral reefs. But she was heartened that Cardenas’ team showed corals can grow in high-carbon environments, a finding that “provides some hope for the future of corals.”

Study co-authors included researchers from the Leibniz Centre for Tropical Marine Research (ZMT) in Germany; the State Office for Mining, Energy and Geology in Germany; and the following institutions in the Philippines: Ateneo de Manila University, Agricultural Sustainability Initiatives for Nature Inc., and Planet Dive Resort.

Source/Credit: University of Texas at Austin

en091521_02

New ALMA study reveals the many molecular faces of protoplanetary disks

 
Pictured is a collage showing about 50% of the complete data from the MAPS collaboration. Image credit: Charles Law, Molecules with ALMA at Planet-forming Scales

An international group of scientists, including University of Michigan astronomers, has mapped the chemical composition of protoplanetary disks surrounding five nearby young stars—an effort that will allow the astronomers to search the disks for planet formation in real time.

The survey provides the most detailed pictures of planet-forming gases to date, which will help scientists understand how planets form, ranging from gas giants called hot Jupiters to our own life-sustaining planet.

“The goal of this program was to survey the chemistry of planet formation with the highest resolution possible in a limited amount of time—just 130 hours. We wanted to know how planets are born and what sets their composition at birth,” said Edwin Bergin, U-M professor of astronomy, co-principal investigator of the survey and co-author on the papers.

“This can then be compared to the composition of exoplanetary atmospheres and in solar system planets to understand how common Jupiters are and, eventually, life-bearing worlds like the Earth.”

The collaboration used the Atacama Large Millimeter/submillimeter Array, or ALMA, to complete the most extensive chemical composition mapping of the protoplanetary disks at high resolution that allows scientists to probe the makeup of their planet- and comet-forming regions.

The new study unlocks clues about the role of molecules in planetary system formation, and whether these young planetary systems in-the-making have what it takes to host life. The results of the program, called MAPS, or Molecules with ALMA at Planet-forming Scales, will appear in an upcoming 20-paper special edition of The Astrophysical Journal Supplement Series.

Planets form in the disks of dust and gas, called protoplanetary disks, surrounding young stars. The chemical makeup of these disks may have an impact on the planets themselves, including how and where planetary formation occurs, the chemical composition of the planets, and whether those planets have the organic composition necessary to support life.

“A planet’s composition is a record of the location in the disk in which it was formed,” said U-M astronomer Arthur Bosman, lead author of many of the studies. “Connecting planet and disk composition enables us to peer into the history of a planet and helps us to understand the forces that formed it.”
This composite image of ALMA data from the young star HD 163296 shows hydrogen cyanide emission laid over a starfield. The MAPS project zoomed in on hydrogen cyanide and other organic and inorganic compounds in planet-forming disks to gain a better understanding of the compositions of young planets and how the compositions link to where planets form in a protoplanetary disk. Image credit: ALMA (ESO/NAOJ/NRAO)/D. Berry (NRAO), K. Öberg et al (MAPS)

MAPS specifically looked at the protoplanetary disks surrounding the young stars IM Lup, GM Aur, AS 209, HD 163296 and MW480, where evidence of ongoing planet formation has already been detected. The project led to multiple discoveries, including a link between dust and chemical substructures and the presence of large reservoirs of organic molecules in the inner disk regions of the stars.

“With ALMA, we were able to see how molecules are distributed where exoplanets are currently assembling, and what we saw is that most planets likely form in a chemical environment that looks rather similar to the solar nebula, the birthplace of our solar system,” said MAPS principal investigator Karin Öberg, an astronomer at the Harvard Smithsonian Center for Astrophysics.

“Most importantly, we saw that the planet-forming disks around these five young stars are factories of a special class of organic molecules, so-called nitriles, which are implicated in the origins of life here on Earth.”

Bosman led Maps VII, which examined the elemental composition of the gas at locations in three of the five disks targeted by MAPS where Jupiter-like planets may be forming. In his study, Bosman and co-authors found the gas surrounding these potentially nascent planets to be poor in carbon, oxygen and heavier elements, while rich in hydrocarbons, such as methane.

“The chemistry that is seen in protoplanetary disks should be inherited by forming planets,” Bosman said. “A carbon- and oxygen-poor environment suggests the existence of a subset of giant planets that have low water abundances in general. This is the opposite of current planet composition studies, and we are finding that the building blocks of many giant planets out there are very different from what we think formed our own solar system giants, Jupiter and Saturn.”

Bosman and Bergin pushed ALMA’s techniques to its limits in order to observe the velocities of gas very close to a disk’s star, within three astronomical units—an astronomical unit is the distance between the Earth and the sun. Gas swirls at higher velocity the closer it is to the star, and based on these velocities, Bosman and Bergin were able to observe one object that appears to be on the verge of planet formation. These results are published in the study MAPS XV.

“This allows us to look for signatures of these hidden forming planets in the gas structure—sort of a planet calling card: ‘I’m here,'” Bergin said.

U-M postdoctoral fellows and graduate students also led papers published in the supplement series. In MAPS XIX, postdoctoral fellow Jane Huang and co-authors showed that one disk (GM Aur) is still accreting material from its parent cloud while actively forming planets, providing a fresh supply of material to these young worlds.

In MAPS XVII, graduate student Jenny Calahan and co-authors measured the gas temperature and its structure using sophisticated models around HD 163296. In MAPS VIII, graduate student Felipe Alarcón and co-authors explored how the observed chemical composition comes to be with a detailed chemical model of the AS209 planet-forming disk.

Altogether, MAPS is providing exactly that: a map for scientists to follow, connecting the dots between the gas and dust in a protoplanetary disk and the planets that eventually form from them to create a planetary system.

Studies:
MAPS VII (PDF)
MAPS XV (PDF)
MAPS XVII (PDF)
MAPS XIX (PDF)

Source/Credit: University of Michigan

sn091521_01

Troubled waters

Dr Katrina Davis
Associate Professor of Conservation Biology

New research led by the University of Oxford, published in Conservation Letters, has examined the conflict between small-scale fisheries and marine mammals, using the experience of fisheries on the west coast of South America to highlight a worldwide issue.

Globally, conflict between recovering seal and sea lion populations and fishing communities has been escalating. This new research presents a unique overview of this conflict, particularly from the fishers’ perspective, and proposes solutions that will be relevant to many fishing communities around the world. 

In this part of South America, specifically Peru and Chile, marine mammals have been protected since the mid-20th century. Conservation policies have mostly been successful and over the last thirty years marine mammal populations - specifically those of sea lions and seals - have recovered. The study found:

• Nearly 9 out of 10 fishers have a negative impression of sea lions.

• Fishers report that on average sea lions reduce their catch and income by over 50%. 

• Whilst it’s illegal for sea lions and seals to be killed, this is happening regularly with over 70% of fishers admitting that sea lions are being killed to defend catches.

• Fishers’ overwhelming concern is that sea lion populations are now too large. 

To manage this conflict, there’s a need to balance the competing objectives of wildlife conservation with protection for local communities. There’s still concern about sea lion and seal populations because of how recently they’ve recovered, but small-scale fisheries are struggling, and fishers are often earning less than the minimum wage.

The international community needs to incorporate the needs and opinions of fishers in the global dialogue, including considering if protecting human welfare could involve reducing protection for marine mammals. 

‘If the global community is committed to a post-2020 deal for nature and people where improvements to people's wellbeing and nature conservation are both fulfilled - the elusive ‘win-win’ - then governments and scientists must engage with these “messy” local conflicts that repeat across the globe but resist high-level simplification.’ Professor Katrina Davis

'The recovery of marine mammals means that there’s a much higher likelihood that these animals will come into conflict with local fishers.'  Professor Katrina Davis

Sea lions and seals eat the same fish targeted by fisheries, so they’re in competition for resources, and it’s not uncommon for fishers to catch fish that have already been ‘nibbled’ by the marine mammals. They can also be accidentally caught in fishing nets and break them, meaning that the fisheries must pay to replace equipment.  

By understanding fishers’ motivations and perceptions we can develop more effective managerial solutions to the fisheries. Including managing sea lion populations, providing financial compensation for catch losses and gear damage, training programs, and shifting focusing from fishing to eco-tourism. 

Lead author Professor Katrina Davis says, 'A tricky balance must be met between ensuring the future viability of marine mammal populations and ensuring that the livelihoods of small-scale fishers are protected. Fishers perceive that they are suffering large catch and income losses because of sea lions—and it’s these perceptions that we have to manage when we’re developing policy solutions.'

Moving forward, researchers plan to investigate the impact of culls on these interactions, whether this would be viable without harming population levels, and whether it would curb aggression towards marine mammals. 

Source/Credit: University of Oxford

en091521_01

A rare Tibetan worm may hold key to long-acting COVID vaccines

 

Caterpillars with emerging Ophiocordyceps sinensis
Credit: William Rafti Institute
A molecule isolated from the world’s most valuable parasite, the caterpillar fungus (Ophiocordyceps sinensis), may provide clues to better and more stable mRNA vaccines, according to research being done in Australia.

The molecule was first isolated from cordyceps fungi in the 1950s. These fungi infect ghost moth larvae, to make 'summer grass' prized in Tibetan and Chinese medicines for its benefits as a tonic and as a treatment for sexual dysfunction.

Associate Professor Traude Beilharz, from the Biomedicine Discovery Institute at Monash University in Melbourne, and her team have been studying the cordycepin molecule because of its ability to trick cells into increasing nucleotides and making mRNA with longer 3'UTRs. According to Associate Professor Beilharz, understanding how 3' UTRs work is really important to improving the stability and function of vaccines. Their research was recently published in the eLife journal.

The lab is now using what they have learned about 3'UTRs from that study to create a screening

Associate Professor Traude Beilharz

platform to identify optimal 3'UTRs for new mRNA vaccines. These 3’UTRs are crucial in stimulating immunity and may reduce the need for booster shots to maintain this immunity. Rachael Turner, first author of the study, has nearly completed her PhD thesis. Next she will apply her expertise in 3’ UTR function toward improving future mRNA vaccines.

The caterpillar fungus, Ophiocordyceps sinensis, is the world’s most valuable parasite. It’s a relative of the tropical fungus that turns ants into zombies, but unlike its infamous cousin, it is found only on the Tibetan plateau, where it infects the larvae of ghost moths. It has long been part of traditional Chinese medicine, and demand for it has risen so sharply in recent decades that in Beijing it is now worth three times its weight in gold. In Bhutan, one of the countries where the fungus is harvested, it accounts for a significant slice of the gross domestic product.

The development of mRNA vaccines, largely due to COVID-19, has been rapid. In addition, the development of mRNA vaccines against cancer has also developed at pace. According to Associate Professor Beilharz, “mRNA vaccines are a promising technology as the production process is simple, safety profiles are better than those of DNA vaccines, and mRNA-encoded antigens are readily expressed in cells, which stimulate immunity against the virus.”

However, mRNA vaccines also possess some inherent limitations. While side effects such as allergy, renal failure, heart failure, and infarction remain a risk, the vaccine mRNA may also be degraded quickly after administration, leading to the need for boosters.

The best types of mRNA vaccines are those that only encode the target antigen (in the case of COVID vaccines, the spike protein) and contain 5' and 3' untranslated regions (UTRs), which provide comprehensive stimulation of the adaptive and innate immunity. “Studying the cordyceps fungi molecule and how it can be used to understand the function of 3’UTRs is a key step in making better vaccines against infectious diseases like COVID-19 and also cancers,” Associate Professor Beilharz said.

Monash is home to Australia's largest network of RNA and mRNA researchers. Keep up to date with our work on life-saving vaccines and therapeutic treatments on the Monash RNA webpage.

Source/Credit: Monash University

scn091521_01

Featured Article

Coral reef biodiversity predicted to shift as climate changes

  Experimental set up at HIMB with mesocosms. (Photo credit: Chris Jury) Coral reefs are among the most biologically diverse, complex and pr...

Top Viewed Articles