Scientists at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory and collaborators have developed a new type of lidar — a laser-based remote-sensing instrument — that can observe cloud structures at the scale of a single centimeter. The scientists used this high-resolution lidar to directly observe fine cloud structures in the uppermost portion of laboratory-generated clouds. This capability for studying cloud tops with resolution that is 100 to 1,000 times higher than traditional atmospheric science lidars enables pairing with measurements in well-controlled chamber experiments in a way that has not been possible before.
The results, published in the Proceedings of the National Academy of Sciences, provide some of the first experimental data showing of how cloud droplet properties near the tops of clouds differ from those in the cloud interior. These differences are crucial to understanding how clouds evolve, form precipitation, and affect Earth’s energy balance.
“This is the first time we’ve been able to see these cloud-top microstructures directly and non-invasively,” said Fan Yang, an atmospheric scientist at Brookhaven Lab and the lead author of the study. “These structures occur on scales smaller than those used in most atmospheric models, yet they can strongly affect cloud brightness and how likely clouds are to produce rain.”
.jpg)
.jpg)

.jpg)
.jpg)






.jpg)

.jpg)
.jpg)
_MoreDetail-v3_x2_2000x1334.jpg)
_MoreDetail-v3_x1_1527x838.jpg)
_MoreDetail-v2_x2_2400x1600.jpg)

.jpg)