Showing posts with label Engineering. Show all posts
Showing posts with label Engineering. Show all posts

Saturday, October 1, 2022

Exploring Europa Possible with Silicon-Germanium Transistor Technology

Europa Image
Credit: NASA/JPL-Caltech/SETI Institute

Europa is more than just one of Jupiter’s many moons – it’s also one of most promising places in the solar system to look for extraterrestrial life. Under 10 kilometers of ice is a liquid water ocean that could sustain life. But with surface temperatures at -180 Celsius and with extreme levels of radiation, it’s also one of the most inhospitable places in the solar system. Exploring Europa could be possible in the coming years thanks to new applications for silicon-germanium transistor technology research at Georgia Tech.

Regents’ Professor John D. Cressler in the School of Electrical and Computer Engineering (ECE) and his students have been working with silicon-germanium heterojunction bipolar transistors (SiGe HBTs) for decades and have found them to have unique advantages in extreme environments like Europa.

“Due to the way that they're made, these devices actually survive those extreme conditions without any changes made to the underlying technology itself,” said Cressler, who is the project investigator. “You can build it for what you want it to do on Earth, and you then can use it in space.”

The researchers are in year one of a three-year grant in the NASA Concepts for Ocean Worlds Life Detection Technology (COLDTech) program to design the electronics infrastructure for upcoming Europa surface missions. NASA plans to launch the Europa Clipper in 2024, an orbiting spacecraft that will map the oceans of Europa, and then eventually send a landing vehicle, Europa Lander, to drill through the ice and explore its ocean. But it all starts with electronics that can function in Europa’s extreme environment.

Cressler and his students, together with researchers from NASA Jet Propulsion Lab (JPL) and the University of Tennessee (UT), demonstrated the capabilities of SiGe HBTs for this hostile environment in a paper presented at the IEEE Nuclear and Space Radiation Effects Conference in July.

Friday, September 30, 2022

Queen Mary chemical engineers have developed technologies to slash energy consumption in industry

Photo Credit: Quinten de Graaf

In two papers published in the journals Nature and Science, Queen Mary's Professor Livingston and Dr Zhiwei Jiang present their work on nanomembranes – exquisitely thin membranes that can provide an energy efficient alternative to current industry practices.

They demonstrate their technology can be used to refine crude oil and cannabidiol (CBD) oil – two industry giants. Around 80 million barrels of crude oil are processed every day to create fuel and plastic, in a process which consumes massive amounts of energy. The cannabidiol oil industry is fast growing - the Global Cannabidiol (CBD) Market is estimated to reach USD 47.22 Billion by 2028, up from USD 4.9 Billion in 2021.

Andrew Livingston, Professor of Chemical Engineering at Queen Mary, said: 'A vast amount of energy is consumed in industry separating molecules. The aim of our research is to provide low energy alternatives to these processes. Due to the innovations in the chemistry we used to make these membranes, we can achieve molecular architectures that achieve exquisite separations, and provide less resource intensive techniques for the separation of molecules.'

Dr Zhiwei Jiang, Research Associate at Queen Mary, said: 'Thinner is better - the liquid passes through the membranes much more quickly, rapidly speeding up the process, and therefore reducing the plant footprint while processing the same quantity of liquids.’

New Superconducting Qubit Testbed Benefits Quantum Information Science Development

A superconducting qubit sits in a dilution refrigerator in a Pacific Northwest National Laboratory (PNNL) physics lab. This experimental device is the first step in establishing a qubit testbed at PNNL.
  Photo Credit: Andrea Starr | Pacific Northwest National Laboratory

If you’ve ever tried to carry on a conversation in a noisy room, you’ll be able to relate to the scientists and engineers trying to “hear” the signals from experimental quantum computing devices called qubits. These basic units of quantum computers are early in their development and remain temperamental, subject to all manner of interference. Stray “noise” can masquerade as a functioning qubit or even render it inoperable.

That’s why physicist Christian Boutan and his Pacific Northwest National Laboratory (PNNL) colleagues were in celebration mode recently as they showed off PNNL’s first functional superconducting qubit. It’s not much to look at. Its case—the size of a pack of chewing gum--is connected to wires that transmit signals to a nearby panel of custom radiofrequency receivers. But most important, it’s nestled within a shiny gold cocoon called a dilution refrigerator and shielded from stray electrical signals. When the refrigerator is running, it is among the coldest places on Earth, so very close to absolute zero, less than 6 millikelvin (about −460 degrees F).

Container for Hazardous Radioactive Waste Storage Model Created

According to Oleg Tashlykov, the container protects from radiation in all directions.
Photo Credit: Anastasia Farafontova

Ural Federal University scientists designed a container to store solidified liquid radioactive waste containing "long-lived" cesium-137 and cobalt-60, the most potentially dangerous of all radioactive waste. Due to their innovative design and filling, the simulated containers are capable of reducing radiation from radioactive waste to safe levels. One such container could replace five or six of the standard type. An article about the scientific work was published in the journal Progress in Nuclear Energy.

The modeled container consists of three main layers: a stainless steel inner capsule, halloysite clay filler, and an outer cementation concrete layer. The stainless steel capsule holds more than 450,000 cm3 of radioactive waste. Radionuclides are concentrated in a special sorbent, which is used in ion-selective purification and is placed inside the capsule. Stainless steel was chosen because, unlike carbon steel, it is more resistant to corrosion and does not require shielding.

"As a rule, such containers consist of two layers: outer cementation concrete and an inner metallic hosting capsule with a radioactive sorbent (or a sorbent in a cement matrix is placed inside the container). The main disadvantage of such a container arrangement is that their shielding, i.e. protective, capacity is limited. We suggest a three-layer container - with an additional layer between the inner metal capsule and the outer shell. The material that fills this space must be inexpensive and still effectively reduce the gamma radiation emitted by the radioisotopes inside the radioactive waste container. In this case, we investigated the protective properties of the intermediate layer consisting of halloysite - a fine-dispersed nanoscale white clay with a chemical composition rich in aluminum and silicon," says Oleg Tashlykov, Associate Professor at the Department of Nuclear Power Plants and Renewable Energy Sources at UrFU, Head of Research and one of the authors of the article.

Thursday, September 29, 2022

WVU engineers bring new life to electronics recycling, address supply chain shortfalls affecting national defense

Edward Sabolsky, WVU Benjamin M. Statler College of Engineering and Mineral Resources professor uses ceramic bricks to conduct research at his lab. The U.S. Department of Defense has tasked Sabolsky and Terence Musho with developing a new process for recycling electronic waste in order to extract raw materials that are used to build technology critical to U.S. national defense, such as semiconductors. Photo Credit: WVU /Brian Persinger

West Virginia University researchers are resurrecting discarded electronics, recycling electronic waste and recovering minerals from it to make new products critical for national defense.

Terence Musho, associate professor of mechanical and aerospace engineering at the Benjamin M. Statler College of Engineering and Mineral Resources, is leading the project, which received more than $250,000 from the Defense Advanced Research Projects Agency at the U.S. Department of Defense.

The U.S. currently depends on countries like China to provide raw materials that are essential to electronics enabling its national defense. But according to Musho, that “reliance on foreign national resources has led to the White House identifying a critical shortage in the semiconductor supply chain.”

Musho said that shortage is one reason the DOD is eyeing readily available electronic waste like old “LEDs and microelectronic circuits used for amplifying radio frequencies, which contain critical supply chain materials.”

Wednesday, September 28, 2022

Scientists chip away at a metallic mystery, one atom at a time

In this photo from 2020, Christopher Barr, right, a former Sandia National Laboratories postdoctoral researcher, and University of California, Irvine, professor Shen Dillon operate the In-situ Ion Irradiation Transmission Electron Microscope. Barr was part of a Sandia team that used the one-of-a-kind microscope to study atomic-scale radiation effects on metal.
Photo credit: Lonnie Anderson

Gray and white flecks skitter erratically on a computer screen. A towering microscope looms over a landscape of electronic and optical equipment. Inside the microscope, high-energy, accelerated ions bombard a flake of platinum thinner than a hair on a mosquito’s back. Meanwhile, a team of scientists studies the seemingly chaotic display, searching for clues to explain how and why materials degrade in extreme environments.

Based at Sandia, these scientists believe the key to preventing large-scale, catastrophic failures in bridges, airplanes and power plants is to look — very closely — at damage as it first appears at the atomic and nanoscale levels.

“As humans, we see the physical space around us, and we imagine that everything is permanent,” Sandia materials scientist Brad Boyce said. “We see the table, the chair, the lamp, the lights, and we imagine it’s always going to be there, and it’s stable. But we also have this human experience that things around us can unexpectedly break. And that’s the evidence that these things aren’t really stable at all. The reality is many of the materials around us are unstable.”

Tuesday, September 27, 2022

Novel imaging system could mean near-instant biopsy results

Tissue biopsied with a novel imaging system based on 2-photon fluorescence microscopy (TPFM) is showing promising results. The system, described in the journal JAMA Dermatology, was developed by University of Rochester biomedical engineer Michael Giacomelli.
Photo credit: Giacomelli lab

Medicine has advanced dramatically during the last century. But when it comes to getting biopsy results, very little has changed. Consider, for example, what happens when a patient comes in to have a skin lesion biopsied for nonmelanoma skin cancer.

“The surgeon will take a little piece of the skin out,” says Michael Giacomelli, an assistant professor of biomedical engineering and of optics at the University of Rochester. “Someone in pathology will look at it weeks or even a month later under a microscope. And then, depending on what they find, the patient is notified that everything’s fine, don’t worry about it, or we need you to come back for a second appointment so we can treat you.”

Giacomelli is developing a novel imaging system, contained on a portable cart, to shorten this process to two minutes. This would enable a surgeon to immediately determine whether the lesion is cancerous and, if so, to “treat the patient during the same visit instead of stretching it out over the next month and multiple visits.”

The system—using two-photon fluorescence microscopy (TPFM)—demonstrated remarkable accuracy in a pilot study summarized recently in JAMA Dermatology. When tested on 15 biopsies of known nonmelanoma skin cancer, the technology was able to detect basal cell carcinoma with perfect accuracy (100 percent sensitivity and specificity) and squamous cell carcinoma with high accuracy (89 percent sensitivity and 100 percent specificity).

Magnetic Field Helps Thick Battery Electrodes Tackle Electric Vehicle Challenges

Source: University of Texas at Austin
As electric vehicles grow in popularity, the spotlight shines more brightly on some of their remaining major issues. Researchers at The University of Texas at Austin are tackling two of the bigger challenges facing electric vehicles: limited range and slow recharging.

The researchers fabricated a new type of electrode for lithium-ion batteries that could unleash greater power and faster charging. They did this by creating thicker electrodes – the positively and negatively charged parts of the battery that deliver power to a device – using magnets to create a unique alignment that sidesteps common problems associated with sizing up these critical components.

The result is an electrode that could potentially facilitate twice the range on a single charge for an electric vehicle, compared with a battery using an existing commercial electrode.

“Two-dimensional materials are commonly believed as a promising candidate for high-rate energy storage applications because it only needs to be several nanometers thick for rapid charge transport,” said Guihua Yu, a professor in UT Austin’s Walker Department of Mechanical Engineering and Texas Materials Institute. “However, for thick-electrode-design-based next-generation, high-energy batteries, the restacking of nanosheets as building blocks can cause significant bottlenecks in charge transport, leading to difficulty in achieving both high energy and fast charging.”

The key to the discovery, published in the Proceedings of the National Academy of Sciences, uses thin two-dimensional materials as the building blocks of the electrode, stacking them to create thickness and then using a magnetic field to manipulate their orientations. The research team used commercially available magnets during the fabrication process to arrange the two-dimensional materials in a vertical alignment, creating a fast lane for ions to travel through the electrode.

Friday, September 23, 2022

DNA nets capture COVID-19 virus in low-cost rapid-testing platform

Tiny nets woven from DNA strands cover the spike proteins of the virus that causes COVID-19 and give off a glowing signal in this artist’s rendering. 
Image courtesy of Xing Wang

Tiny nets woven from DNA strands can ensnare the spike protein of the virus that causes COVID-19, lighting up the virus for a fast-yet-sensitive diagnostic test – and also impeding the virus from infecting cells, opening a new possible route to antiviral treatment, according to a new study.

Researchers at the University of Illinois Urbana-Champaign and collaborators demonstrated the DNA nets’ ability to detect and impede COVID-19 in human cell cultures in a paper published in the Journal of the American Chemical Society.

“This platform combines the sensitivity of clinical PCR tests and the speed and low cost of antigen tests,” said study leader Xing Wang, a professor of bioengineering and of chemistry at Illinois. “We need tests like this for a couple of reasons. One is to prepare for the next pandemic. The other reason is to track ongoing viral epidemics – not only coronaviruses, but also other deadly and economically impactful viruses like HIV or influenza.”

DNA is best known for its genetic properties, but it also can be folded into custom nanoscale structures that can perform functions or specifically bind to other structures much like proteins do. The DNA nets the Illinois group developed were designed to bind to the coronavirus spike protein – the structure that sticks out from the surface of the virus and binds to receptors on human cells to infect them. Once bound, the nets give off a fluorescent signal that can be read by an inexpensive handheld device in about 10 minutes.

Robot sleeves for kids with cerebral palsy

Experimental setup for earlier iteration of the proposed robot sleeves.
Credit: Jonathan Realmuto/UCR

UC Riverside engineers are developing low-cost, robotic “clothing” to help children with cerebral palsy gain control over their arm movements.

Cerebral palsy is the most common cause of serious physical disability in childhood, and the devices envisioned for this project are meant to offer long-term daily assistance for those living with it.

However, traditional robots are rigid and not comfortable on the human body. Enabled by a $1.5 million grant from the National Science Foundation, this project is taking the novel approach of building devices from soft textiles, which will also facilitate more natural limb functioning.

“Hard materials don’t interact well with humans,” said Jonathan Realmuto, UCR assistant professor of mechanical engineering and project lead. “What we’re going for by using materials like nylon and elastic are essentially robotic garments.”

These garments will contain sealed, airtight regions that can inflate, making them temporarily rigid, and providing the force for movement.

“Let’s say you want to flex the elbow for a bicep curl. We can inject air into specially designed bladders embedded in the fabric that would propel the arm forward,” Realmuto said.

Thursday, September 22, 2022

Heat-resistant nanophotonic material could help turn heat into electricity

His artist’s rendering shows the material reflecting infra-red light while letting other wavelengths pass through.
Image credit: Andrej Lenert

A new nanophotonic material has broken records for high-temperature stability, potentially ushering in more efficient electricity production and opening a variety of new possibilities in the control and conversion of thermal radiation.

Developed by a University of Michigan-led team of chemical and materials science engineers, the material controls the flow of infrared radiation and is stable at temperatures of 2,000 degrees Fahrenheit in air, a nearly twofold improvement over existing approaches.

The material uses a phenomenon called destructive interference to reflect infrared energy while letting shorter wavelengths pass through. This could potentially reduce heat waste in thermophotovoltaic cells, which convert heat into electricity but can’t use infrared energy, by reflecting infrared waves back into the system. The material could also be useful in optical photovoltaics, thermal imaging, environmental barrier coatings, sensing, camouflage from infrared surveillance devices and other applications.

Tuesday, September 20, 2022

Octopuses prefer certain arms when hunting and adjust tactics to prey

A California two-spot octopus hunts a shrimp in an experiment, striking with its second arm.
Credit: Wardill Lab, University of Minnesota

Famous for their eight arms, octopuses leverage all of their appendages to move, jet through the water and capture prey. But their movements can look awkward and seemingly unplanned at times, more closely resembling aliens than earthly creatures.

“Normally when you look at an octopus for a short while, nothing is repeatable. They squirm around and just look weird in their exploratory movements,” said Trevor Wardill, an assistant professor in the College of Biological Sciences who studies octopuses and other cephalopods.

For a new study in Current Biology, Wardill and colleagues investigated whether octopuses preferred certain arms over others when hunting, rather than using each arm equally. A better understanding of how they use their arms will aid efforts to develop next-generation, highly-manipulative soft robots.

The research team studied the California two-spot octopus, which live for about two years and grow to the size of tennis balls. Octopus arms are numbered on each side of its body, starting at the center. Researchers dropped different types of prey, including crabs and shrimp, into the tanks and recorded video as the octopuses, who were hiding in ornamental SpongeBob “dens” with one eye facing outward, lunged for the snack. Because crabs move slowly while shrimp can flick their tails to escape quickly, each type of prey potentially requires different hunting tactics.

Monday, September 19, 2022

Laser light offers new tool for treating bone cancer

Left: An image of cancerous tissue prepared with the traditional hematoxylin and eosin (H&E) staining method. Right: An image of cancerous tissue prepared with the UV-PAM method. The results are very similar to those produced with the H&E method, but are ready much faster.
Credit: Caltech

Label-free intraoperative histology of bone tissue via deep-learning-assisted ultraviolet photoacoustic microscopy of the many ways to treat cancer, the oldest, and maybe most tried and true, is surgery. Even with the advent of chemotherapy, radiation therapy, and more experimental treatments like bacteria that seek and destroy cancer cells, cancers, very often, simply need to be cut out of a patient's body.

The goal is to remove all of the cancerous tissue while preserving as much of the surrounding healthy material as possible. But because it can be difficult to draw a clean line between cancerous and healthy tissues, surgeons often err on the side of caution and remove healthy tissue to make sure they have taken out all of the cancerous tissue.

This is especially problematic when a patient is suffering from a cancer that afflicts bones; bones present unique challenges during surgery because of how hard they are compared with other tissues and because they grow back much more slowly than other kinds of tissue.

Deformation fingerprints will help researchers identify and design better metallic materials

Materials science and engineering professors Jean-Charles Stinville and Marie Charpagne captured nanoscale deformation events at the origin of metal failure that can help researchers design new materials for medical, transportation, safety, energy and environmental applications. 
Photo credit: Fred Zwicky

Engineers can now capture and predict the strength of metallic materials subjected to cycling loading, or fatigue strength, in a matter of hours – not the months or years it takes using current methods.

In a new study, researchers from the University of Illinois Urbana-Champaign report that automated high-resolution electron imaging can capture the nanoscale deformation events that lead to metal failure and breakage at the origin of metal failure. The new method helps scientists to rapidly predict the fatigue strength of any alloy, and design new materials for engineering systems subject to repeated loading for medical, transportation, safety, energy and environmental applications.

The findings of the study, led by materials science and engineering professors Jean-Charles Stinville and Marie Charpagne, are published in the journal Science.

Fatigue of metals and alloys – such as the repeated bending of a metal paperclip that leads to its fracture – is the root cause of failure in many engineering systems, Stinville said. Defining the relationship between fatigue strength and the microstructure is challenging because metallic materials display complex structures with features ranging from the nanometer to the centimeter scale.

Saturday, September 17, 2022

The magneto-optic modulator

Electricity flowing through a metal coil generates electric (purple) and magnetic (faint green) fields. This changes the properties of the substrate, which tunes the resonance ring (red) to different frequencies. The whole setup enables the scientists to convert a continuous beam of light (red on left) into pulses that can carry data through a fiber-optic cable. 
Photo Credit: Brian Long

Many state-of-the-art technologies work at incredibly low temperatures. Superconducting microprocessors and quantum computers promise to revolutionize computation, but scientists need to keep them just above absolute zero (-459.67° Fahrenheit) to protect their delicate states. Still, ultra-cold components have to interface with room temperature systems, providing both a challenge and an opportunity for engineers.

An international team of scientists, led by UC Santa Barbara’s Paolo Pintus, has designed a device to help cryogenic computers talk with their fair-weather counterparts. The mechanism uses a magnetic field to convert data from electrical current to pulses of light. The light can then travel via fiber-optic cables, which can transmit more information than regular electrical cables while minimizing the heat that leaks into the cryogenic system. The team’s results appear in the journal Nature Electronics.

Friday, September 16, 2022

New wearable device measures the changing size of tumors below the skin

The FAST system measures tumor size regression and is a new way to test the efficacy of cancer drugs.
  Image credit: Alex Abramson, Bao Group, Stanford University

Electronically sensitive, skin-like membrane can measure changes in tumor size to the hundredth of a millimeter. It represents a new, faster, and more accurate approach to screen cancer drugs.

Engineers at Stanford University have created a small, autonomous device with a stretchable and flexible sensor that can be adhered to the skin to measure the changing size of tumors below. The non-invasive, battery-operated device is sensitive to one-hundredth of a millimeter (10 micrometers) and can beam results to a smartphone app wirelessly in real time with the press of a button.

In practical terms, the researchers say, their device – dubbed FAST for “Flexible Autonomous Sensor measuring Tumors” – represents a wholly new, fast, inexpensive, hands-free, and accurate way to test the efficacy of cancer drugs. On a grander scale, it could lead to promising new directions in cancer treatment. FAST is detailed in a paper published Sept. 16 in Science Advances.

Each year researchers test thousands of potential cancer drugs on mice with subcutaneous tumors. Few make it to human patients, and the process for finding new therapies is slow because technologies for measuring tumor regression from drug treatment take weeks to read out a response. The inherent biological variation of tumors, the shortcomings of existing measuring approaches, and the relatively small sample sizes make drug screenings difficult and labor-intensive.

Improved Mineralized Material Can Restore Tooth Enamel

Scientists tested the effectiveness of the new enamel coating on real healthy teeth.
Photo credit: Danil Ilyukhin

Scientists have perfected hydroxyapatite, a material for mineralizing bones and teeth. By adding a complex of amino acids to hydroxyapatite, they were able to form a dental coating that replicates the composition and microstructure of natural enamel. Improved composition of the material repeats the features of the surface of the tooth at the molecular and structural level, and in terms of strength surpasses the natural tissue. The new method of dental restoration can be used to reduce the sensitivity of teeth in case of abrasion of enamel or to restore it after erosion or improper diet. The study and experimental results are published in Results in Engineering.

"Tooth enamel has a protective function, but unfortunately, its integrity can be destroyed by, for example, abrasion, erosion or microfractures. If the surface of the tissue is not repaired in time, the enamel lesion will affect the dentin and then the pulp of the tooth. Therefore, it is necessary to restore the enamel surface to a healthy level or build up additional layers on the surface if it has become very thin. We have created a biomimetic (i.e., mimicking natural) mineralized layer whose nanocrystals replicate the ordering of apatite nanocrystals of tooth enamel. We also found out that the designed layer of hydroxyapatite has increased nanohardness that exceeds that of native enamel," says Pavel Seredin, Leading Specialist of Research and Education Center "Nanomaterials and Nanotechnologies", Ural Federal University, Head of the Department of Solid State Physics and Nanostructures at Voronezh State University.

Wednesday, September 14, 2022

First light at the most powerful laser in the US


The laser that will be the most powerful in the United States is preparing to send its first pulses into an experimental target at the University of Michigan.

Funded by the National Science Foundation, it will be a destination for researchers studying extreme plasmas around the U.S. and internationally.

Called ZEUS, the Zetawatt-Equivalent Ultrashort pulse laser System, it will explore the physics of the quantum universe as well as outer space, and it is expected to contribute to new technologies in medicine, electronics and national security.

“ZEUS will be the highest peak power laser in the U.S. and among the most powerful laser systems in the world. We’re looking forward to growing the research community and bringing in people with new ideas for experiments and applications,” said Karl Krushelnick, director of the Center for Ultrafast Optical Science, which houses ZEUS, and the Henry J. Gomberg Collegiate Professor of Engineering.

The first target area to get up and running is the high-repetition target area, which runs experiments with more frequent but lower power laser pulses. Michigan alum Franklin Dollar, an associate professor of physics and astronomy at the University of California Irvine, is the first user, and his team is exploring a new kind of X-ray imaging.

They will use ZEUS to send infrared laser pulses into a gas target of helium, turning it into plasma. That plasma accelerates electrons to high energies, and those electron beams then wiggle to produce very compact X-ray pulses.

Wednesday, September 7, 2022

Researchers use combined imaging techniques to monitor stem cell therapies

Samuel Grant, professor and postdoctoral fellow director in Chemical and Biomedical Engineering at the FAMU-FSU College of Engineering, works with graduate student Dayna Richter on a 900-megahertz magnet at the National High Magnetic Field Laboratory in Tallahassee, Florida.
Credit: Mark Wallheiser/FAMU-FSU College of Engineering

When patients are treated for strokes and other neurological disorders, understanding what is happening inside the nervous system is a crucial part of treatment. Doctors rely on imaging tools such as magnetic resonance imaging (MRI) to peer inside the body and see if interventions are helping.

A Florida State University research team has found that a combination of two MRI techniques can provide early answers on the effectiveness of stem cell therapies for treating strokes, which could help physicians quickly know if a treatment is working or if they should change their strategy. Their work was published in the journal Translational Stroke Research.

“With strokes, the sooner that you can salvage tissue that might be at risk, because it’s been starved from oxygen and glucose, the sooner you can avoid some of that inflammatory response and help the tissue recover,” said Sam Grant, a professor at the FAMU-FSU College of Engineering and faculty researcher at the National High Magnetic Field Laboratory.

The researchers examined rat brains that had suffered a stroke and been injected with stem cells, specifically adult mesenchymal stem cells, which come from a variety of sources in the human body and are the focus of treatments for neurological diseases.

Turning carbon dioxide into valuable products

Professor Ariel Furst (center), undergraduate Rachel Ahlmark (left), postdoc Gang Fan (right), and their colleagues are employing biological materials, including DNA, to achieve the conversion of carbon dioxide to valuable products.
Credits: Gretchen Ertl

Carbon dioxide (CO2) is a major contributor to climate change and a significant product of many human activities, notably industrial manufacturing. A major goal in the energy field has been to chemically convert emitted CO2 into valuable chemicals or fuels. But while CO2 is available in abundance, it has not yet been widely used to generate value-added products. Why not?

The reason is that CO2 molecules are highly stable and therefore not prone to being chemically converted to a different form. Researchers have sought materials and device designs that could help spur that conversion, but nothing has worked well enough to yield an efficient, cost-effective system.

Two years ago, Ariel Furst, the Raymond (1921) and Helen St. Laurent Career Development Professor of Chemical Engineering at MIT, decided to try using something different — a material that gets more attention in discussions of biology than of chemical engineering. Already, results from work in her lab suggest that her unusual approach is paying off.

Featured Article

Robot sleeves for kids with cerebral palsy

Experimental setup for earlier iteration of the proposed robot sleeves. Credit: Jonathan Realmuto/UCR UC Riverside engineers are developing ...

Top Viewed Articles