. Scientific Frontline: October 2023

Tuesday, October 31, 2023

Amazon deforestation linked to long distance climate warming

Amazon Forest seen from the Amazon Tall Tower Observatory, a scientific research facility in the Amazon rainforest of Brazil. 
Photo Credit Dr Jess Baker, University of Leeds.

Deforestation in the Amazon causes land surfaces up to 100 kilometers away to get warmer, according to a new study.

The research, by a team of British and Brazilian scientists, led by Dr Edward Butt at the University of Leeds, suggests that tropical forests play a critical role in cooling the land surface - and that effect can play out over considerable distances. 

It is known that when tropical forests are cleared, the climate in the immediate vicinity gets warmer.  

In this latest study, the researchers wanted to know if deforestation in the Amazon was resulting in climate warming further afield, and the study examined the impact of forest loss on sites up to 100 kilometers away. 

Researchers Show SARS-Cov-2 Infection Affects Energy Stores in the Body, Causing Organ Failure

Jonathan C. Schisler, PhD
Photo Credit: Courtesy of UNC
An international research team, including Jonathan C. Schisler, PhD, in the UNC School of Medicine, has found how SARS-CoV-2 causes widespread “energy outages” throughout major organs, and how these effects contribute to debilitating long COVID symptoms.

The lungs were once at the forefront of SARS-Cov-2 research, but as reports of organ failure and other serious complications poured in, scientists set out to discover how and why the respiratory virus was causing serious damage to the body’s major organs, including the lungs.

An interdisciplinary COVID-19 International Research Team (COV-IRT), which includes UNC School of Medicine’s Jonathan C. Schisler, PhD, found that SARS-CoV-2 alters mitochondria on a genetic level, leading to widespread “energy outages” throughout the body and its major organs. Their findings, published in Science Translational Medicine, explain how these effects contribute to long COVID symptoms and point to new therapeutic targets.

“We found that at peak infection time, there are distinct changes in different regions of the brain, including is a large decrease in mitochondrial genes in the cerebellum, the part of the brain that controls our muscles, balance, cognition, and emotion” said Schisler, assistant professor of pharmacology and member of the UNC McAllister Heart Institute. “The lung is the primary site of infection, but molecular signals are being transmitted affecting the entire body, with the heart, kidney, and liver being more affected than others, even long after the virus is gone.”

Sets of neurons work in sync to track ‘time’ and ‘place,’ giving humans context for past, present and future

Illustration Credit: MasterTux

Two studies led by UCLA researchers offer new insights into the way neurons in the human brain represent time and space – the most basic ingredients of consciousness of human existence and the primary dimensions of experience that allow us to reconstruct the past and envision the future.

The new findings are based on recordings of the activity of single neurons in the brain, from studies led by Dr. Itzhak Fried, a neurosurgeon and researcher at the UCLA David Geffen School of Medicine, is the senior author of two articles in Cell Reports. Patients who had undergone surgical placement of special depth electrodes developed and implanted by Fried for surgical treatment of intractable epilepsy agreed to perform cognitive tasks while their brain cell activity is recorded for these studies.

Neurons that act as the brain’s GPS system – termed “place cells” and “grid cells” – were discovered initially in rodents, similar findings later described in humans by Fried and colleagues at UCLA in collaboration with Dr. Michael Kahana, professor of Psychology at the University of Pennsylvania and a co-senior author of one of the new studies. The brain’s clock cells, or “time cells,” were identified in more recent years.

New genes linked to ADHD identified potentially paving the way for new treatments

Image Credit: Braňo

Several new genes associated with conditions such as Attention-deficit hyperactivity disorder (ADHD) have been identified, unearthing a significant connection between these disorders and our immune system that could lead to new treatments. The research from the University of Surrey also confirms the role of gene ADGRL3 in conditions such as ADHD, giving scientists a greater understanding of its workings.

During this innovative study, scientists led by Dr Matt Parker from Surrey set out to understand more about ADGRL3, a gene closely linked to ADHD and other ‘externalizing’ disorders, in promoting behaviors such as substance abuse, which can be associated with the conditions. Through this work, scientists identified several new genes related to externalizing disorders, which could lead to the development of new medication to lessen the impact on individuals.

DNA organization influences the growth of deadly brain tumors in response to neuronal signals

Silvia Remeseiro
Photo Credit: Mattias Pettersson

A pioneering study at Umeå University, Sweden, has unveiled that the 3D organization of DNA can influence the progression of the aggressive brain tumor known as glioblastoma. Having identified the factors that glioblastoma uses to respond to neurons by growing and spreading, this discovery paves the way for further research into new treatments for brain tumors.

"We have now identified the most important factors behind how the tumor responds to nerve cells, thus becoming more dangerous. These findings offer hope in our long-term battle against this difficult-to-treat cancer, for which the prognosis has not improved in decades," comments Silvia Remeseiro, Wallenberg fellow at WCMM, Assistant Professor at Umeå University, and lead author of the study.

Glioblastoma is the most fatal type of brain tumor among adults and there is currently no curative treatment. Glioblastoma patients typically face a survival of roughly one-year post-diagnosis. Even following current treatment regimes, which include surgery, radiotherapy and chemotherapy, a mere four per cent of patients are still alive five years after diagnosis.

Pinpointing HIV immune response

HIV, the AIDS virus (yellow), infecting a human cell
Image Credit: National Cancer Institute

New research combining computer modeling and experiments with macaques shows the body’s immune system helps control human immunodeficiency virus (HIV) infections largely by suppressing viral production in already infected cells while also killing viral infected cells, but only within a narrow time window at the start of a cell’s infection.

“To eliminate HIV, we have to understand how the immune system attempts to control the infection,” said Ruy M. Ribeiro, a theoretical biologist at Los Alamos National Laboratory who led the development of the model underpinning the research. Ribeiro is the corresponding author of the paper about the findings, published in Nature Communications.

The research team included Los Alamos Senior Fellow Alan S. Perelson and a former Los Alamos postdoctoral researcher now at the Fred Hutchinson Cancer Research Center. Their collaborators at the University of Pittsburg managed the experiments with macaques infected with simian immunodeficiency virus (SIV) to validate the model. SIV infections in monkeys behave the same way as HIV in humans.

Giant planets cast a deadly pall

Artist's depiction of a star system that is crowded with giant planets.
Illustration Credit: NASA/Dana Berry

Giant gas planets can be agents of chaos, ensuring nothing lives on their Earth-like neighbors around other stars. New studies show, in some planetary systems, the giants tend to kick smaller planets out of orbit and wreak havoc on their climates. 

Jupiter, by far the biggest planet in our solar system, plays an important protective role. Its enormous gravitational field deflects comets and asteroids that might otherwise hit Earth, helping create a stable environment for life. However, giant planets elsewhere in the universe do not necessarily protect life on their smaller, rocky planet neighbors. 

A new Astronomical Journal paper details how the pull of massive planets in a nearby star system are likely to toss their Earth-like neighbors out of the “habitable zone.” This zone is defined as the range of distances from a star that is warm enough for liquid water to exist on a planet’s surface, making life possible.

Unlike most other known solar systems, the four giant planets in HD 141399 are farther from their star. This makes it a good model for comparison with our solar system where Jupiter and Saturn are also relatively far from the sun.  

“It’s as if they have four Jupiters acting like wrecking balls, throwing everything out of whack,” said Stephen Kane, UC Riverside astrophysicist and author of the journal paper. 

Researchers observe wolves hunting and killing sea otters and harbor seals on Alaska’s Katmai coast

Wolf with a sea otter on Alaska's Katmai coast.
Photo Credit: Kelsey Griffin

Firsthand observations of a wolf hunting and killing a harbor seal and a group of wolves hunting and consuming a sea otter on Alaska’s Katmai coast have led scientists to reconsider assumptions about wolf hunting behavior.

Wolves have previously been observed consuming sea otter carcasses, but how they obtain these and the frequency of scavenging versus hunting marine prey is largely unknown. Scientists at Oregon State University, the National Park Service and Alaska Department of Fish and Game are beginning to change that with a paper just published in Ecology.

In the paper, they describe several incidents they observed involving wolves and marine mammals in Katmai National Park that they believe haven’t been previously documented:

The importance of the Earth's atmosphere in creating the large storms that affect satellite communications

Illustration Credit: ERG Science Team

A study from an international team led by researchers from Nagoya University in Japan and the University of New Hampshire in the United States has revealed the importance of the Earth’s upper atmosphere in determining how large geomagnetic storms develop. Their findings reveal the previously underestimated importance of the Earth’s atmosphere. Understanding the factors that cause geomagnetic storms is important because they can have a direct impact on the Earth’s magnetic field such as causing unwanted currents in the power grid and disrupting radio signals and GPS. This research may help predict the storms that will have the greatest consequences. 

Scientists have long known that geomagnetic storms are associated with the activities of the Sun. Hot charged particles make up the Sun's outer layer, the one visible to us. These particles flow out of the Sun creating the ‘solar wind’, and interact with objects in space, such as the Earth. When the particles reach the magnetic field surrounding our planet, known as the magnetosphere, they interact with it. The interactions between the charged particles and magnetic fields lead to space weather, the conditions in space that can affect the Earth and technological systems such as satellites.  

Monday, October 30, 2023

Window to avoid 1.5°C of warming rapidly closing

Photo Credit: Patrick Hendry / altered by Scientific Frontline

Humanity is rapidly reaching the limit for how much additional carbon can be emitted into the atmosphere to keep global warming within 1.5 °C, according to new research.

If emissions stay at current day levels, what is known as the "remaining carbon budget" will be exhausted before the end of the decade. 

Dr Chris Smith, climate modeler and a research fellow in the School of Earth and Environment at Leeds, co-authored the study.  He said: “This study gives the most updated measure of how much more carbon dioxide humanity can continue to put into the atmosphere to give us a fifty per cent chance of staying within the 1.5 °C threshold agreed at international climate talks.  

"If we continue to emit carbon dioxide at current levels, we will exhaust that remaining 1.5°C carbon budget in just six years.   

“This is not to say that we only have ‘six years to save the planet’, because 1.5°C is not a hard boundary of when climate change will suddenly become much worse. However, damages, risks and the likelihood of exceeding physical and ecological tipping points increase sharply with continued warming.  

Study Suggests Epigenetic Age May Predict Memory Function Better Than Actual Age

The Stony Brook research team investigating epigenetic age acceleration hope to understand more about the biological and environmental factors related to it. From left: Daisy V. Zavala, Stacey Scott and Krishna Veeramah.
Photo Credit: John Griffin, Stony Brook University

A study led by researchers at Stony Brook University shows that age acceleration, when one’s so-called biological clock runs quicker than one’s actual age, is linked to poorer memory and slower rates of processing information. The team measured biological “clocks” derived from the DNA of 142 adults aged 25-65 years old and had the participants complete daily cognitive tests on smartphones. Their findings, which imply that epigenetic age acceleration could be a better indicator of how well a person remembers information and how quickly they work with information, are detailed in the Journal of Gerontology: Biological Sciences.

There are well-known chronological age differences in cognitive performance — on average, younger adults tend to remember more information and respond more quickly than older adults. One presumed explanation is biological wear-and-tear across life, but until recently, there was not a way to test biological aging to explain these differences between younger and older people.

Aging researchers currently have significant interest in examining epigenetic patterns that change how the DNA in our cells fold and how genes behave. Unlike our DNA genome, which stays the same throughout our lifetime in every cell of our body, our epigenome can change through time and can be influenced by our behavior and environment. These epigenetic changes can thus indicate a person’s biological age, which may differ from chronological age.

To advance space colonization, WVU research explores 3D printing in microgravity

WVU engineering students and Microgravity Research Team members Renee Garneau, Trenton Morris and Ronan Butts test a 3D printer the MRT lab has designed to operate in weightless environments like a spaceship, the moon or Mars.
Photo Credit: Brian Persinger / West Virginia University

Research from West Virginia University students and faculty into how 3D printing works in a weightless environment aims to support long-term exploration and habitation on spaceships, the moon or Mars.

Extended missions in outer space require the manufacture of crucial materials and equipment onsite, rather than transporting those items from Earth. Members of the Microgravity Research Team said they believe 3D printing is the way to make that happen.

The team’s recent experiments focused on how a weightless microgravity environment affects 3D printing using titania foam, a material with potential applications ranging from UV blocking to water purification. ACS Applied Materials and Interfaces published their findings.

“A spacecraft can’t carry infinite resources, so you have to maintain and recycle what you have and 3D printing enables that,” said lead author Jacob Cordonier, a doctoral student in mechanical and aerospace engineering at the WVU Benjamin M. Statler College of Engineering and Mineral Resources. “You can print only what you need, reducing waste. Our study looked at whether a 3D-printed titanium dioxide foam could protect against ultraviolet radiation in outer space and purify water. 

New Frequency Comb Can Identify Molecules in 20-Nanosecond Snapshots

A new frequency comb setup can capture the moment-by-moment details of carbon dioxide gas escaping from a nozzle at supersonic speeds in an air-filled chamber, followed by rapid oscillations of gas due to complex aerodynamics within the chamber. The data plot shows the absorbance of light (vertical) over time (horizontal left to right) across a range of frequencies (horizontal forward to back).
Illustration Credit: G. Mathews/University of Colorado Boulder

From monitoring concentrations of greenhouse gases to detecting COVID in the breath, laser systems known as frequency combs can identify specific molecules as simple as carbon dioxide and as complex as monoclonal antibodies with unprecedented accuracy and sensitivity. Amazing as they are, however, frequency combs have been limited in how fast they can capture a high-speed process such as hypersonic propulsion or the folding of proteins into their final three-dimensional shapes.

Now, researchers at the National Institute of Standards and Technology (NIST), Toptica Photonics AG and the University of Colorado Boulder have developed a frequency comb system that can detect the presence of specific molecules in a sample every 20 nanoseconds, or billionths of a second. With this new capability, researchers can potentially use frequency combs to better understand the split-second intermediate steps in fast-moving processes ranging from the workings of hypersonic jet engines to the chemical reactions between enzymes that regulate cell growth. The research team announced its results in a paper published in Nature Photonics.

Bowel cancer: aspirin activates protective genes

Photo Credit: günter

Colorectal cancer (bowel cancer) is the third most common form of cancer worldwide, with around 1.9 million newly diagnosed cases and 900,000 deaths every year. Therefore, preventive substances represent an urgent clinical need. Aspirin/acetylsalicylic acid has proven to be one of the most promising candidates for the prevention of colorectal cancer. Among other findings, studies have shown that when patients with cardiovascular diseases took low doses of aspirin over several years, it reduced their risk of colorectal cancer. Furthermore, aspirin can inhibit the progression of colorectal cancer. Now a team led by Heiko Hermeking, Professor of Experimental and Molecular Pathology at LMU, has investigated which molecular mechanisms mediate these effects.

As the researchers report in the journal Cell Death and Disease, aspirin induces the production of two tumor-suppressive microRNA molecules (miRNAs) called miR-34a and miR-34b/c. To do this, aspirin binds to and activates the enzyme AMPK, which in turn alters the transcription factor NRF2 such that it migrates into the cell nucleus and activates the expression of the miR-34 genes. For this activation to succeed, aspirin additionally suppresses the oncogene product c-MYC, which otherwise inhibits NRF2.

New strategies needed to help banana farmers recover from climate shocks

Photo Credit: Jonas Von Werne

Extreme weather events and the globalized nature of food production puts smallholder farmers at risk of ‘double exposure’ of production and market loss, according to a new study.

Researchers including from the University of Exeter, University of Oxford and ETH Zurich, examined the Global Food Value Chain (GFVC) – an international network of stakeholders involved in food production, processing, distribution, retailing and consumption – of bananas grown in the Dominican Republic, the UK’s most important supplier of organic bananas.

They found that smallholder farmers hit by hurricane-induced flooding faced not only the loss of production but also a loss of market access for their undamaged produce, and called for new strategies to tackle the aftermath of climate shocks.

The researchers integrated satellite, household survey and trade data to investigate the impacts of two consecutive hurricanes (Hurricanes Irma and Maria in 2017) and subsequent flooding on smallholder banana farmers in Dominican Republic and what factors determined their recovery from such events.

Weekly insulin injections have the potential to be as effective

Photo Credit: Peter Stanic

Insulin icodec, a once-weekly basal injection to treat type 1 diabetes, has the potential to be as effective in managing the condition as daily basal insulin treatments, according to research from the University of Surrey. The results of the year-long phase 3 clinical trial could revolutionize the future of diabetes care and help millions of people better manage their condition. 

During this pioneering study, scientists across 12 countries at 99 sites, led by Professor David Russell-Jones from Surrey, tested the efficacy and safety of a weekly basal injection of icodec (a long-lasting type of insulin) and compared it to a daily basal injection of insulin degludec in adults with type 1 diabetes. Short acting insulin to cover meals was used in both groups. 

Professor David Russell-Jones, Professor of Diabetes and Endocrinology at the University of Surrey and a Consultant at the Royal Surrey Foundation Trust, said: 

"Many people find managing a long-term condition such as diabetes very difficult and report missing vital insulin injections. Missed injections can affect glycaemic control, and a lack of consistency in the treatment has been linked to increased rates of diabetic ketoacidosis, a serious complication of the condition that can be life-threatening. Reducing insulin injection frequency could lessen the burden of treatment for some people with the condition and improve their glycaemic control." 

Type 1 diabetes occurs when the body cannot produce enough of the hormone insulin, causing the level of glucose (sugar) in the blood to become too high, leading to an increased risk of developing heart, eye, and kidney disease. 

To learn more about the efficacy of icodec, scientists recruited 582 participants with type 1 diabetes. Participants were split into two groups; the first received once-weekly injections of icodec (700U/ml), and the second received daily injections of degludec (100 U/ml), both in combination with aspart, a short-acting insulin at mealtimes. 

After 26 weeks, scientists identified HbA1C (a protein within red blood cells with glucose attached to it and the universal marker for overall diabetes control) levels in those who had taken icodec had decreased from a mean of 7.59 percent at baseline to an estimated mean of 7.15 percent, and for degludec, the mean had decreased from 7.63 percent to 7.10 percent. The estimated treatment difference between them being 0.05 percent, confirming the non-inferiority of icodec to degludec, but with a significantly reduced injection frequency for patients to manage. 

 Scientists did also identify higher rates of hypoglycemic episodes (abnormally low levels of glucose in the blood) in the icodec group compared to degludec. However, despite the higher levels in the icodec group, scientists noted that incidences were low in both groups, with most episodes only requiring oral carbohydrate administration. For icodec, time below 3.0 mmol/L was at the threshold of the internationally recommended targets during weeks 22-26 and below recommended targets during weeks 48-52.  

 Professor Russell-Jones added: 

 "What we have found is that once-weekly icodec injections showed non inferiority to once-daily injections of degludec in reducing HbA1C after 26 weeks. Although there is a slightly higher rate of hypoglycaemia under this regime, we found this could be easily managed. We’ve concluded this new insulin may have a role in reducing the burden of daily basal injections for patients managing type 1 diabetes. 

 "Our findings are very promising, but further analysis of continuous glucose monitoring data and real-world studies are needed." 

Funding: Provided by Novo Nordisk. 

Published in journalThe Lancet

Source/CreditUniversity of Surrey

Reference Number: phar103023_01

Privacy Policy | Terms of Service | Contact Us

Humans have substantially altered the relationship between wolves and deer

A breeding female wolf traveling on a logging road carrying a deer fawn back to her pups in June 2023.
 Photo Credit: Voyageurs Wolf Project

New research from the University of Minnesota’s Voyageurs Wolf Project found that human activities in northern Minnesota — logging, road and trail creation, and infrastructure development — have profoundly impacted where wolves hunt and kill deer fawns. By altering forest ecosystems, humans have created an environment that possibly favors predators. 

This research, recently published in Ecological Applications, is a collaboration between the University of Minnesota, Northern Michigan University, the University of Manitoba, Voyageurs National Park, and the Voyageurs Wolf Project. The Voyageurs Wolf Project is funded, in part, by the Minnesota Environment and Natural Resources Trust Fund as recommended by the Legislative-Citizen Commission on Minnesota Resources (LCCMR). 

“The premise is really quite simple: human activities change where deer are on the landscape, and wolves go where the deer are,” said co-lead author Thomas Gable, a postdoctoral researcher at the University of Minnesota and project lead for the Voyageurs Wolf Project. 

New antibody could target breast cancers

A synthetic antibody called RD-43, developed by graduate student Zhe Qian in collaboration with CSHL’s Antibody & Phage Display Shared Resource, may help stop the spread of breast cancer by degrading the PTPRD enzyme.
Image Credit: Courtesy of Cold Spring Harbor Laboratory

An enzyme that may help some breast cancers spread can be stopped with an antibody created in the lab of Cold Spring Harbor Laboratory Professor Nicholas Tonks. With further development, the antibody might offer an effective drug treatment for those same breast cancers.

The new antibody targets an enzyme called PTPRD that is overabundant in some breast cancers. PTPRD belongs to a family of molecules known as protein tyrosine phosphatases (PTPs), which help regulate many cellular processes. They do this by working in concert with enzymes called kinases to control how other proteins inside cells behave. Kinases add small chemical regulators called phosphates to proteins. PTPs take them off.

Disruptions in the addition or removal of phosphates can contribute to inflammation, diabetes, and cancer. Some disruptions can be corrected with kinase-blocking drugs. Tonks explains:

Tackling the growing issue of light pollution

An experimental street light erected at Cockle Park Farm, Newcastle University
Photo Credit: Courtesy of Newcastle University

Light pollution, or excessive artificial light at night, is now recognized as a major driver of environmental change, adversely impacting wildlife and even human health. But predicting how entire communities of plants and animals respond to light pollution is difficult. Published today (30 October) in the Philosophical Transactions of the Royal Society B, the world’s longest running scientific journal, a team of Guest Editors that includes researchers from Newcastle University have compiled a theme issue titled ‘light pollution in complex ecological systems’ that draws together 17 papers from experts in the field.

Professor Darren Evans from the School of Natural and Environmental Sciences, who is a Guest Editor and author of three of the published papers, said: “Street lights, vehicles, commercial buildings and domestic sources are all contributing to night-time light pollution, and it is becoming increasingly clear that it affects a range of plants and animals, including humans. But most studies to date have tended to look at the responses of individual species, rather than looking at the responses of whole communities at the ecosystem scale. This theme issue goes some way to addressing that gap.”

The collection of studies in the theme issue aims to dive deeper into how light pollution affects the natural environment. Newly published articles investigate light pollution ecology at various scales and in a range of environments, from single processes to whole communities, to better understand the relationship between light pollution, ecological balance, and human influence.

Using lasers to ‘heat and beat’ 3D-printed steel could help reduce costs

Retrieval of a stainless steel part made by 3D printing 
Photo Credit: Jude E. Fronda

The method, developed by a research team led by the University of Cambridge, allows structural modifications to be ‘programmed’ into metal alloys during 3D printing, fine-tuning their properties without the ‘heating and beating’ process that’s been in use for thousands of years.

The new 3D printing method combines the best qualities of both worlds: the complex shapes that 3D printing makes possible, and the ability to engineer the structure and properties of metals that traditional methods allow. The results are reported in the journal Nature Communications.

3D printing has several advantages over other manufacturing methods. For example, it’s far easier to produce intricate shapes using 3D printing, and it uses far less material than traditional metal manufacturing methods, making it a more efficient process. However, it also has significant drawbacks.

“There’s a lot of promise around 3D printing, but it’s still not in wide use in industry, mostly because of high production costs,” said Dr Matteo Seita from Cambridge’s Department of Engineering, who led the research. “One of the main drivers of these costs is the amount of tweaking that materials need after production.”

The brain may learn about the world the same way some computational models do

Two new MIT studies offer evidence supporting the idea that the brain uses a process similar to a machine-learning approach known as “self-supervised learning.”
Illustration Credit: geralt

To make our way through the world, our brain must develop an intuitive understanding of the physical world around us, which we then use to interpret sensory information coming into the brain.

How does the brain develop that intuitive understanding? Many scientists believe that it may use a process similar to what’s known as “self-supervised learning.” This type of machine learning, originally developed as a way to create more efficient models for computer vision, allows computational models to learn about visual scenes based solely on the similarities and differences between them, with no labels or other information.

A pair of studies from researchers at the K. Lisa Yang Integrative Computational Neuroscience (ICoN) Center at MIT offers new evidence supporting this hypothesis. The researchers found that when they trained models known as neural networks using a particular type of self-supervised learning, the resulting models generated activity patterns very similar to those seen in the brains of animals that were performing the same tasks as the models.

The findings suggest that these models are able to learn representations of the physical world that they can use to make accurate predictions about what will happen in that world, and that the mammalian brain may be using the same strategy, the researchers say.

Two bee species become one as researchers solve identity puzzle

The male Xanthesma (Xenohesma) brachycera.
Photo Credit: Courtesy of Curtin University

A new study by Curtin and Flinders Universities has found that what were thought to be two different species of native Australian bee are in fact one.

Lead researcher Dr Kit Prendergast from the Curtin School of Molecular and Life Sciences said the study, based on native bee surveys at Perth locations of Wireless Hill, Shenton Park and Russo Reserve, fundamentally alters previous thinking.

“Essentially the research team used DNA sequencing to show that what we used to think of as two different species of bees are actually just the males and females of one, single species,” Dr Prendergast said.

“For many native bee species in Australia, their descriptions were based on only one sex. Identifying males and females as belonging to the same species solely through observation can be challenging, as both sexes of the same species often display noticeable differences.

Saturday, October 28, 2023

Native waterfall-climbing fish threatened by climate change, human activity

ʻOʻopu nākea is a type of goby fish found only in Hawaiʻi.
Photo Credit: Courtesy of University of Hawaiʻi

New research out of the University of Hawaiʻi at Mānoa is highlighting the importance of the ma uka (mountain) to ma kai (ocean) approach to the stewardship of Hawaiʻi’s natural and cultural resources.

The research focused on ʻoʻopu nākea, a type of goby fish found only in Hawaiʻi. ʻOʻopu nākea spends the larval part of its life in the ocean before returning to the freshwater streams to complete adulthood. It is also one of five freshwater fishes endemic to Hawaiʻi with fused pelvic fins that act as a suction cup to help climb waterfalls as they migrate upstream.

Unfortunately, like so many endemic species to Hawaiʻi, ʻoʻopu nākea are under threat from climate change and human activity and previous research indicated the species no longer needed to reach the ocean to complete their life cycle.

The UH Mānoa-led team utilized the latest microchemistry methods and found that 100% of ʻoʻopu nākea are still using the ocean as an important part of larval development. The study, “Understanding Amphidromy in Hawaiʻi: ʻOʻopu nākea (Awaous stamineus),” was published in the Journal of Fish Biology, and although the findings were positive, they still highlight the importance of preserving Hawaiʻi’s freshwater streams and bodies of water.

Mechanics of breast cancer metastasis discovered, offering target for treatment

A human breast cancer cell, adenocarcinoma MDA-MB-231, demonstrates metastatic-like adhesion, spreading and migrating in a collagen matrix designed to mimic soft tissue. New research led by Penn State reveals for the first time the mechanics behind how breast cancer cells may invade healthy tissues. The discovery, showing that a motor protein called dynein powers the movement of cancer cells in soft tissue models, offers new clinical targets against metastasis and has the potential to fundamentally change how cancer is treated. 
Image Credit: Erdem Tabdanov / Pennsylvania State University
(CC BY-NC-ND 4.0 DEED)

The most lethal feature of any cancer is metastasis, the spread of cancer cells throughout the body. New research led by Penn State reveals for the first time the mechanics behind how breast cancer cells may invade healthy tissues. The discovery, showing that a motor protein called dynein powers the movement of cancer cells in soft tissue models, offers new clinical targets against metastasis and has the potential to fundamentally change how cancer is treated.

“This discovery marks a paradigm shift in many ways,” said Erdem Tabdanov, assistant professor of pharmacology at Penn State and a lead co-corresponding author on the study, recently published in the journal Advanced Science. “Until now, dynein has never been caught in the business of providing the mechanical force for cancer cell motility, which is their ability to move themselves. Now we can see that if you target dynein, you could effectively stop motility of those cells and, therefore, stop metastatic dissemination.”

The project began as a collaboration between Penn State’s Department of Chemical Engineering and Penn State’s College of Medicine, before growing into a multi-institution partnership with researchers at the University of Rochester Medical Center, Georgia Institute of Technology, Emory University, and the U.S. Food and Drug Administration.

Spinaron: A Rugby in a Ball Pit. New Quantum Effect Demonstrated for the First Time

The cobalt atom (red) has a magnetic moment (“spin,” blue arrow ), which is constantly reoriented (from spin-up to spin-down) by an external magnetic field. As a result, the magnetic atom excites the electrons of the copper surface (gray), causing them to oscillate (creating ripples). This revelation by the Würzburg-Dresden Cluster of Excellence ct.qmat was made possible thanks to the physicists’ inclusion of an iron tip (yellow) on their scanning tunneling microscope.
Illustration Credit: © Juba Bouaziz/Ulrich Puhlfürst

For the first time, experimental physicists from the Würzburg-Dresden Cluster of Excellence ct.qmat have demonstrated a new quantum effect aptly named the “spinaron.” In a meticulously controlled environment and using an advanced set of instruments, they managed to prove the unusual state a cobalt atom assumes on a copper surface. This revelation challenges the long-held Kondo effect – a theoretical concept developed in the 1960s, and which has been considered the standard model for the interaction of magnetic materials with metals since the 1980s. These groundbreaking findings were published today in the esteemed journal Nature Physics.

Ultra-Cold & Ultra-Strong: Pushing Boundaries in the Lab

Extreme conditions prevail in the Würzburg laboratory of experimental physicists Professor Matthias Bode and Dr. Artem Odobesko. Affiliated with the Cluster of Excellence ct.qmat, a collaboration between JMU Würzburg and TU Dresden, these visionaries are setting new milestones in quantum research. Their latest endeavor is unveiling the spinaron effect. They strategically placed individual cobalt atoms onto a copper surface, brought the temperature down to 1.4 Kelvin (–271.75° Celsius), and then subjected them to a powerful external magnetic field. “The magnet we use costs half a million euros. It’s not something that’s widely available,” explains Bode. Their subsequent analysis yielded unexpected revelations.

Binghamton computer scientists program robotic seeing-eye dog to guide the visually impaired

Associate Professor of Computer Science Shiqi Zhang and his students have programmed a robot guide dog to assist the visually impaired. The robot responds to tugs on its leash.
Photo Credit: Stephen Folkerts

Last year, the Computer Science Department at the Thomas J. Watson College of Engineering and Applied Science went trick-or-treating with a quadruped robotic dog. This year, they are using the robot for something that Assistant Professor Shiqi Zhang calls “much more important” than handing out candy, as fun as that can be.

Zhang and PhD students David DeFazio and Eisuke Hirota have been working on a robotic seeing-eye dog to increase accessibility for visually impaired people. They presented a demonstration in which the robot dog led a person around a lab hallway, confidently and carefully responding to directive input.

Zhang explained some of the reasons behind starting the project.

“We were surprised that throughout the visually impaired and blind communities, so few of them are able to use a real seeing-eye dog for their whole life. We checked the statistics, and only 2% of them are able to do that,” he said.

Meltwater Flowing Beneath Antarctic Glaciers May Be Accelerating Their Retreat

An aerial view of the Denman Glacier ice tongue in East Antarctica.
Photo Credit: Jamin S. Greenbaum

A new Antarctic ice sheet modeling study from scientists at UC San Diego’s Scripps Institution of Oceanography suggests that meltwater flowing out to sea from beneath Antarctic glaciers is making them lose ice faster. 

The model’s simulations suggest this effect is large enough to make a meaningful contribution to global sea-level rise under high greenhouse gas emissions scenarios. 

The extra ice loss caused by this meltwater flowing out to sea from beneath Antarctic glaciers is not currently accounted for in the models generating major sea-level rise projections, such as those of the Intergovernmental Panel on Climate Change (IPCC). If this process turns out to be an important driver of ice loss across the entire Antarctic ice sheet, it could mean current projections underestimate the pace of global sea-level rise in decades to come.

“Knowing when and how much global sea-level will rise is critical to the welfare of coastal communities,” said Tyler Pelle, the study’s lead author and a postdoctoral researcher at Scripps. “Millions of people live in low-lying coastal zones and we can’t adequately prepare our communities without accurate sea-level rise projections.”

Friday, October 27, 2023

Sheffield astronomers help to confirm heaviest elements in the Universe are formed in kilonovae

The Gamma-Ray Burst (GRB) 230307A and its associated kilonova explosion.
Image Credit: NASA, ESA, CSA, STScI, A. Levan (Radboud University and University of Warwick)

Astrophysicists are one step closer to understanding how the heaviest chemical elements are created in the universe, thanks to a camera designed and built at the University of Sheffield.

Scientists from the Astrophysics Group at the University of Sheffield observed the merger of two dense neutron stars, known as a kilonova, in a spiral galaxy a billion light years away

The discovery of the kilonova, only the second one to be observed, was made possible thanks to observations with the University of Sheffield’s camera ULTRACAM mounted on the New Technology Telescope at the European Southern Observatory in Chile

Kilonovae are important because their explosions are believed to form the heaviest elements in the periodic table, including most of the gold, platinum and uranium found on Earth

Astrophysicists are one step closer to understanding how the heaviest chemical elements are created in the universe, thanks to a camera designed and built at the University of Sheffield.

Senescent Cells Key to Axolotl Limb Regeneration

Axolotl – the Mexican salamander with unique regenerative abilities helps scientists uncover the molecular mechanisms of regeneration.
Photo Credit: © TUD/CRTD

Senescent cells have been implicated in a variety of processes typically connected with deterioration and aging. Recent studies suggest that the short-term presence of senescent cells can actually be beneficial. A new comprehensive study by the Yun group shows that cellular senescence plays a critical role during axolotl limb regeneration. Senescent cells in the regenerating structure use the Wnt pathway to signal to surrounding cells and create a microenvironment that favors regeneration and growth. The results were published in the journal Developmental Cell.

Senescent cells, often referred to as “zombie cells”, are no longer dividing but also not dying. Their buildup is considered one of the hallmarks of aging however recent studies suggest that they also play a role in positive processes such as wound healing and tumor suppression.

‘‘Our understanding of the role that senescent cells play in regenerative processes is very limited. Since most of the current knowledge relies on in-vitro studies, it was clear to us that to get new insights we need to find a way to study senescent cells in-vivo, i.e., analyze them within the animal during the process of regeneration,” says Dr. Maximina Yun, research group leader at the Center for Regenerative Therapies Dresden (CRTD) and the Cluster of Excellence Physics of Life at TUD Dresden University of Technology as well as the Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG) in Dresden.

Long COVID most prevalent in the most seriously ill

Image Credit: Scientific Frontline

A collaborative study involving researchers from Karolinska Institutet has charted the prevalence of severe physical symptom burden amongst Scandinavians for up to two years after a SARS-CoV-2 infection. Most affected were people who had a severe COVID-19 infection, while the researchers found no elevated prevalence of long COVID in those who had never been bedridden. The study is published in The Lancet Regional Health – Europe.

By mid-October 2023, over 771 million cases of COVID-19 had been reported to the World Health Organization (WHO). An estimated 10 to 20 per cent of the affected have persistent symptoms.

Close to 65,000 participants

In the present study, researchers examined the prevalence of persistent physical symptoms in people with different degrees of COVID-19 severity and compared them with people who had not had a confirmed COVID-19 diagnosis. The study comprised 64,880 adults from Sweden, Denmark, Norway and Iceland with self-reported physical symptoms between April 2020 and August 2022.

Over 22,000 of the participants were diagnosed with COVID-19 during the period, almost 10 per cent of whom were bedridden for at least seven days. The prevalence of chronic symptoms such as shortness of breath, chest pain, dizziness, headaches, and low energy/ fatigue, was 37 per cent higher in those who had had a COVID-19 diagnosis than in those who had not.

Carbon copy: new method of recycling carbon fiber shows huge potential

UNSW Canberra researcher Di He with a sample of carbon fiber recycled using a method he developed.
 Photo Credit: UNSW Canberra

Ultra-light cars made from recycled carbon fiber are a step closer, thanks to a new method of recycling developed at UNSW Canberra. 

As manufacturing and technology continually take steps forward, products are using more advanced materials and becoming more sophisticated, but also more complicated.

This presents a problem when these products reach the end of their useable life, because they’re either difficult or expensive to recycle, or both.

For example, as the world transitions to electric vehicles, disposing of their used batteries, some made with highly toxic materials, will be a challenge.

As it stands, many advanced products either end up in landfill or incinerated, which is a waste of valuable resources and harmful to the planet.

One material that has been difficult to recycle is carbon fiber.

Alpine rock reveals dynamics of plate movements in Earth’s interior

Professor Lucie Tajčmanová, Heidelberg University, examines the whiteschist sample from the Dora Maira Massif of the Western Alps.
Photo Credit: Sebastian Cionoiu, Heidelberg University

Examining how plates move in Earth's mantle and how mountains form is no easy feat. Certain rocks that have sunk deep into Earth's interior and then returned from there can deliver answers. Led by the Department of Geosciences at Goethe University Frankfurt, an international team of geologists has now succeeded in analyzing whiteschist from the Alps so precisely by means of computer modeling that it calls a previous theory about plate movement into question. 

Geoscientists analyze rocks in mountain belts to reconstruct how they once moved downwards into the depths and then returned to the surface. This history of burial and exhumation sheds light on the mechanisms of plate tectonics and mountain building. Certain rocks that sink far down into Earth's interior together with plates are transformed into different types under the enormous pressure that prevails there. During this UHP metamorphosis (UHP: Ultra High Pressure), silica (SiO2) in the rock, for example, becomes coesite, which is also referred to as the UHP polymorph of SiO2. Although it is chemically still silica, the crystal lattices are more tightly packed and therefore denser. When the plates move upwards again from the depths, the UHP rocks also come to the surface and can be found in certain places in the mountains. Their mineral composition provides information about the pressures to which they were exposed during their vertical journey through Earth's interior. Using lithostatic pressure as a unit of measurement, it is possible to correlate pressure and depth: the higher the pressure, the deeper the rocks once lay. 

Cancer's sweet Achilles heel

Weakly immunogenic and strongly immunogenic tumor cells were subcutaneously transplanted into B4GALT3 knockout and wild-type mice. Tumor cell growth was significantly suppressed in knockout mice.
Illustration Credit: KyotoU Jake Tobiyama/Heng Wei

An old campaign slogan for cough syrup, "It tastes awful. And it works," seemed to imply that any sweet content might have diminished the medicinal effect.

Sweetness, in the case of cancer, appears as a chain of sugar molecules attached to proteins by beta1,4-galactosyltransferase-3, or B4GALT3. According to the Cancer Genome Atlas, a high expression of this enzyme is associated with noticeably shortened survival rates in several types of immunotherapy cancers, such as neuroblastoma, cervical, and bladder cancer. However, the specific role of B4GALT3 in the tumor immune microenvironment -- or TIME -- was still unknown.

Now, a team of researchers at Kyoto University and Yokohama City University has found that B4GALT3 deficiency in mice TIME inhibits tumor growth. The study shows that a significant reduction of glycosylation -- a type of protein modification -- on T cell surfaces correlates with increases in CD8+ immune cells infiltrating tumors.

Thursday, October 26, 2023

Stunting in infancy linked to differences in cognitive and brain function

Photo Credit: bethL

Children who are too short for their age can suffer reduced cognitive ability arising from differences in brain function as early as six months of age, according to new research.

Researchers from the University of Nottingham were part of a team led by the University of East Anglia who compared the ‘visual working memory’ – the memory capacity that holds visual cues for processing – in children who had stunted growth with those having typical growth.

Published today in the journal Nature Human Behavior, the study found that the visual working memory of infants with poor physical growth was disrupted, making them more easily distracted and setting the stage for poorer cognitive ability one year later.

Stunted growth had previously been linked with poor cognitive outcomes later in life, but this is the first time that this association has been found in infancy. It is also the first time stunted growth has been linked to functional differences in how the brain works in early development.

Decoding Past Climates through Dripstones

NATURAL ARCHIVES: “Dripstones, or speleothems, are unique natural archives.
Photo Credit: Zarko Tankosic

A recent study demonstrates how dripstones can be crucial for reconstructing past climates. The new approach can provide a detailed picture of the climate around early human occupations in South Africa.

“Dripstones, or speleothems, are unique natural archives - like Earth’s USB sticks. They store a wealth of information on past climate which helps us to better understand the environment in which early humans lived”, Jenny Maccali explained. She is a scientist at SapienCE Centre of Excellence, and has led the study, now published in Climate of the Past.

New perspective to ancient climate

South Africa has a highly dynamic climate resulting from its position at the convergence of two oceanic basins, the Atlantic Ocean to the west and the Indian Ocean to the east. The region is also located at the boundary of different climate zones (subtropical vs. temperate), and the proximity of the Antarctic ice sheet has a direct impact on its climate by influencing the easterlies and westerlies winds position, and hence rainfall pattern.

Unconventional Approach to C. Diff

C. difficile bacteria seen through a scanning electron microscope and colored green.
Image Credit: Janice Carr via CDC

Clostridioides difficile (C. diff) intestinal infections can cause severe, debilitating diarrhea in patients who are hospitalized or on immunosuppressive therapies. The infections can be very hard to eradicate, roaring back when patients try to taper their antibiotics. Many people wind up on antibiotics for months and can become resistant to three or more of them.

“Often being on antibiotics isn’t sufficient,” explained Meenakshi Rao, Harvard Medical School assistant professor of pediatrics at Boston Children’s Hospital. “The infection can catalyze severe, runaway inflammation, especially in patients with inflammatory bowel disease.”

This inflammation, in turn, promotes C. diff colonization of intestinal tissue. And antibiotics themselves could be part of the problem.

“Once we attack C. diff with antibiotics, it disrupts the gut microbiome,” said Min Dong, HMS associate professor of surgery at Boston Children’s, whose lab studies bacterial toxins and how to combat them. “That creates an opportunity for severe, recurring infection, and it becomes a vicious cycle.”

Venus had Earth-like plate tectonics billions of years ago

Photo Credit: NASA/JPL

A new study found that Venus, a scorching wasteland of a planet according to scientists, may have once had tectonic plate movements similar to those believed to have occurred on early Earth, a new study found. The finding sets up tantalizing scenarios regarding the possibility of early life on Venus, its evolutionary past and the history of the solar system.

Writing in Nature Astronomy, a team of scientists led by Brown University researchers describes using atmospheric data from Venus and computer modeling to show that the composition of the planet’s current atmosphere and surface pressure would only have been possible as a result of an early form of plate tectonics, a process critical to life that involves multiple continental plates pushing, pulling and sliding beneath one another.

On Earth, this process intensified over billions of years, forming new continents and mountains, and leading to chemical reactions that stabilized the planet’s surface temperature, resulting in an environment more conducive to the development of life.

Fruit, nectar, bugs and blood: How bat teeth and jaws evolved for a diverse dinnertime

A side-view image of the skull of a greater spear-nosed bat, Phyllostomus hastatus, a noctilionoid species with an omnivorous diet.
Photo Credit: Sharlene Santana/University of Washington

They don’t know it, but Darwin’s finches changed the world. These closely related species — native to the Galapagos Islands — each sport a uniquely shaped beak that matches their preferred diet. Studying these birds helped Charles Darwin develop the theory of evolution by natural selection.

A group of bats has a similar — and more expansive — evolutionary story to tell. There are more than 200 species of noctilionoid bats, mostly in the American tropics. And despite being close relatives, their jaws evolved in wildly divergent shapes and sizes to exploit different food sources. A paper published in Nature Communications shows those adaptations include dramatic, but also consistent, modifications to tooth number, size, shape and position. For example, bats with short snouts lack certain teeth, presumably due to a lack of space. Species with longer jaws have room for more teeth — and, like humans, their total tooth complement is closer to what the ancestor of placental mammals had.

Breakthrough synthesis method improves solar cell stability

Jin Hou is a Rice University graduate student and lead author on a study published in Nature Synthesis. Photo Credit: Courtesy of Jin Hou

Solar cell efficiency has soared in recent years due to light-harvesting materials like halide perovskites, but the ability to produce them reliably at scale continues to be a challenge.

A process developed by Rice University chemical and biomolecular engineer Aditya Mohite and collaborators at Northwestern University, the University of Pennsylvania and the University of Rennes yields 2D perovskite-based semiconductor layers of ideal thickness and purity by controlling the temperature and duration of the crystallization process.

Known as kinetically controlled space confinement, the process could help improve the stability and reduce the cost of halide perovskite-based emerging technologies like optoelectronics and photovoltaics.

Unlocking Sugar to Generate Biofuels and Bioproducts

Chang-Jun Liu (left) and Nidhi Dwivedi (right) in the Brookhaven Lab greenhouse with rice plants like those used in this study.
Photo Credit: Courtesy of Brookhaven National Laboratory

Plant biologists at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory have engineered enzymes to modify grass plants so their biomass can be more efficiently converted into biofuels and other bioproducts. As described in a paper just published in Plant Biotechnology Journal, these enzymes modify molecules that make up plant cell walls to provide access to fuel-generating sugars normally locked within complex structures. 

“The concept of biomass to biofuel seems simple, but it is technically very difficult to release the sugars,” noted Chang-Jun Liu, a senior plant biologist at Brookhaven Lab who led the study.

Plant biomass is full of energy-rich complex sugar molecules generated from photosynthesis. Each plant cell is surrounded by a rigid cell wall made of sugars and a material called lignin that provides structural support. Reducing lignin to gain access to the sugars has been the focus of research aimed at using plants to generate fuels and other products commonly made from petroleum.

Endangered whales live in area earmarked for gas exploration

Risso's dolphins.
Photo Credit Leonidas Karantzas/Greenpeace

Endangered whales and dolphins live year-round in an area of the Mediterranean earmarked for oil and gas exploration, new research shows.

Various cetacean species are known to inhabit the Hellenic Trench off Greece in the summer, but until now little has been known about their winter whereabouts.

This lack of information has been used to justify seismic surveys (which may harm whales and dolphins) in winter.

The new study found that at least four species – including the regionally endangered sperm whale – live in the deep waters of the Hellenic Trench in both summer and winter.

The research was carried out in 2021-22 by the Greenpeace Research Laboratories, University of Exeter, Greenpeace Greece and the Pelagos Cetacean Research Institute.

“The Mediterranean is one of the busiest seas on the planet, and whales and dolphins are already threatened by ship strikes, overfishing, bycatch (accidental catching), pollution with chemicals and plastics, and climate change,” said Dr Kirsten Thompson.

Featured Article

Autism and ADHD are linked to disturbed gut flora very early in life

The researchers have found links between the gut flora in babies first year of life and future diagnoses. Photo Credit:  Cheryl Holt Disturb...

Top Viewed Articles