. Scientific Frontline: Biomedical
Showing posts with label Biomedical. Show all posts
Showing posts with label Biomedical. Show all posts

Friday, April 5, 2024

Discovery of how limiting damage from an asthma attack could stop disease

Scientists at King’s have discovered a new cause for asthma that sparks hope for treatment that could prevent the life-threatening disease.
Image Credit: Copilot DALL-E 3 AI Generated

Most current asthma treatments stem from the idea that it is an inflammatory disease. Yet, the life-threatening feature of asthma is the attack or the constriction of airways, making breathing difficult. A new study, published in the journal Science, shows for the first time that many features of an asthma attack—inflammation, mucus secretion, and damage to the airway barrier that prevents infections - result from this mechanical constriction in a mouse model.

The findings suggest that blocking a process that normally causes epithelial cell death could prevent the damage, inflammation, and mucus that result from an asthma attack.

Professor Jody Rosenblatt from the School of Basic & Medical Biosciences said: “Our discovery is the culmination of more than ten years of work. As cell biologists who watch processes, we could see that the physical constriction of an asthma attack causes widespread destruction of the airway barrier. Without this barrier, asthma sufferers are far more likely to get long-term inflammation, wound healing, and infections that cause more attacks. By understanding this fundamental mechanism, we are now in a better position to prevent all these events.”

Thursday, April 4, 2024

The Rotisserie-Inspired Device That Could Revolutionize Cancer Surgery

The Zavaleta Lab’S Raman Rotisserie Device Creates a Map of the Surface of a Resected Tumor to Aid Surgeons in the Operating Room.
Photo Credit: Alex Czaja

Like many Texans, Cristina Zavaleta grew up enjoying the culinary delights of the state’s famous smokehouse BBQs. She couldn’t have imagined that those humble rotisseries of her childhood would one day inspire a game-changing device for the operating room that could help surgeons prevent tumor recurrence.

On a team excursion to Disneyland, the WiSE Gabilan Assistant Professor of Biomedical Engineering and her students were reminded of rotisseries when they encountered a food vendor at the Star Wars-themed land, Galaxy’s Edge. It was a lightbulb moment. The rotisserie configuration was a perfect way of intricately scanning excised tumors, with the help of the Zaveleta Lab’s unique nanoparticles, to light up where the cancerous tissue may not have been entirely removed from the patient. Surgeons could then be guided to precisely remove the remaining tumor, all while the patient is still under anesthesia. The result would reduce the need for traumatic repeat surgeries and potential cancer recurrence and metastasis.

Zavaleta and her team built the device, which they dubbed the Raman Rotisserie. It physically rotates a tumor specimen and works in conjunction with an imaging technique known as Raman spectroscopy, which scans the surface of the excised tumor. Their research, which aims to improve the success rate of breast cancer lumpectomies, has now been published in NPJ Imaging.

Autism and ADHD are linked to disturbed gut flora very early in life

The researchers have found links between the gut flora in babies first year of life and future diagnoses.
Photo Credit: Cheryl Holt

Disturbed gut flora during the first years of life is associated with diagnoses such as autism and ADHD later in life. This is according to a study led by researchers at the University of Florida and Linköping University and published in the journal Cell.

The study is the first forward-looking, or prospective, study to examine gut flora composition and a large variety of other factors in infants, in relation to the development of the children's nervous system. The researchers have found many biological markers that seem to be associated with future neurological development disorders, such as autism spectrum disorder, ADHD, communication disorder and intellectual disability.

“The remarkable aspect of the work is that these biomarkers are found at birth in cord blood or in the child’s stool at one year of age over a decade prior to the diagnosis,” says Eric W Triplett, professor at the Department of Microbiology and Cell Science at the University of Florida, USA, one of the researchers who led the study.

Wednesday, April 3, 2024

Pollen is a promising sustainable tool in the bone regeneration process

Scientists have used pollen to grow hydroxyapatite capsules, so the mineral can better support bone regeneration
Photo Credit: Alex Jones

A study has shown pollen grains can be used as green templates for producing biomaterials, showcasing their potential to support drug delivery and bone regeneration.

With an increasingly ageing population, bone fractures are becoming more common. Bone is generally able to self-repair but if the fracture is too big or the person affected too fragile, as for example people with osteoporosis, the use of bone fillers can help.

Hydroxyapatite (HAp) is an inorganic mineral present in human bone and teeth, which can be used to support bone regeneration. It makes up somewhere between 65 per cent and 70 per cent of the weight of human bone. Healthcare professionals often use synthetic and natural HAp when carrying out bone repair treatments.

A team at the University of Portsmouth has worked with international colleagues to explore sustainable ways to improve the process. 

They examined the feasibility of using pollen grains as bio-templates for growing calcium phosphate minerals in the lab - particularly hydroxyapatite (HAp) and β-tricalcium phosphate (TCP), which are types of calcium phosphate used for bone repair.

Featured Article

Autism and ADHD are linked to disturbed gut flora very early in life

The researchers have found links between the gut flora in babies first year of life and future diagnoses. Photo Credit:  Cheryl Holt Disturb...

Top Viewed Articles