Showing posts with label Nutritional Science. Show all posts
Showing posts with label Nutritional Science. Show all posts

Wednesday, August 17, 2022

Climate-resilient breadfruit might be the food of the future

Breadfruit on a tree on the island of St. Vincent and the Grenadines.
Credit: Nyree Zerega/Northwestern University/Chicago Botanic Garden
In the face of climate change, breadfruit soon might come to a dinner plate near you.

While researchers predict that climate change will have an adverse effect on most staple crops, including rice, corn and soybeans, a new Northwestern University study finds that breadfruit — a starchy tree fruit native to the Pacific islands — will be relatively unaffected.

Because breadfruit is resilient to predicted climate change and particularly well-suited to growing in areas that experience high levels of food insecurity, the Northwestern team believes breadfruit could be part of the solution to the worsening global hunger crisis.

The study was published today (Aug. 17) in the journal PLOS Climate.

“Breadfruit is a neglected and underutilized species that happens to be relatively resilient in our climate change projections,” said Northwestern’s Daniel Horton, a senior author on the study. “This is good news because several other staples that we rely on are not so resilient. In really hot conditions, some of those staple crops struggle and yields decrease. As we implement strategies to adapt to climate change, breadfruit should be considered in food security adaptation strategies.”

Horton is an assistant professor of Earth and planetary sciences in Northwestern’s Weinberg College of Arts and Sciences, where he leads the Climate Change Research Group. Lucy Yang, a former student in Horton’s laboratory, is the paper’s first author. For this study, Horton and Yang collaborated with breadfruit expert Nyree Zerega, director of the Program in Plant Biology and Conservation, a partnership between Northwestern and the Chicago Botanic Garden.

Tuesday, August 9, 2022

Students Begin Creating Oil-Based Emulsions for Foods

The internship of Ural Federal University students was the beginning of joint work of the Ural universities in the field of biotechnology.
Credit: Elena Kovaleva

It will be done within the framework of a joint project of the Ural Federal University and the South Ural State University

The Ural Federal University and the South Ural State University started cooperation in the field of progressive biotechnologies. This year, four Master's students from Ural Federal University completed an internship at the university in Chelyabinsk under the supervision of researchers from the Laboratory of Synthesis and Analysis of Food Ingredients (School of Medical Biology) of the South Ural State University.

As part of this project, students will be trained to make double emulsions based on oils for their subsequent use in products. A new format of cooperation and joining efforts of two scientific teams will lead to the creation of new technologies in such an important sphere as food production, says Irina Potoroko, Head of SUSU Department of Food and Biotechnology.

As Elena Kovaleva, Professor at the Ural Federal University Department of Technology of Organic Synthesis, notes, Ural Federal University chemists are engaged not only in food technology, but also in industrial technology, developing methods of extracting biologically active substances from food and plant raw materials. The team is ready to accept students interested in internships.

Virtual reality may offer nutrition educators a new platform

Virtual reality may offer nutrition educators a new platform — and scalable approach — to teach students.
Credit: Image by Pexels from Pixabay

Virtual reality (VR) may provide nutrition teachers and dietitians with an entirely new way to serve real lessons on healthy eating, according to a team of Penn State researchers.

In one study, students learned about nutrition both through an interactive VR lesson, as well as during a more traditional lecture that was hosted in a VR environment. The research also showed that nutrition educators might not even need all the bells and whistles of VR interactivity for those lessons to be effective.

The findings suggest nutrition educators can use VR environments — in both immersive and traditional formats — for remote education. It could lead to a more scalable way to develop and distribute lessons on nutrition, including ones on portion control, according to Travis Masterson, who is the Broadhurst Career Development Professor for the Study of Health Promotion and Disease Prevention and Institute for Computational and Data Sciences affiliate.

“One thing that comes up in nutrition is there is a lot of time spent on education and, as education professionals, we try to provide very simple information to people, but that might not be the most effective way,” said Masterson, who is also the director of the Health, Ingestive Behavior and Technology Laboratory. “When you learn about food, you learn best by experience — by actually dealing with food. For example, if you’re watching a cooking show, you don’t suddenly know how to cook. You need some hands-on experience. So, in this case, we weren't trying to teach someone how to cook, but trying to get some of those food principles across the people.”

Friday, July 29, 2022

It Doesn’t Matter Much Which Fiber You Choose – Just Get More Fiber!

There are lots of choices on the drug store shelves, but which fiber supplement is the right one for you? All of them help, say Duke researchers.
Credit: Duke photo

That huge array of dietary fiber supplements in the drugstore or grocery aisle can be overwhelming to a consumer. They make all sorts of health claims too, not being subject to FDA review and approval. So how do you know which supplement works and would be best for you?

A rigorous examination of the gut microbes of study participants who were fed three different kinds of supplements in different sequences concludes that people who had been eating the least amount of fiber before the study showed the greatest benefit from supplements, regardless of which ones they consumed.

“The people who responded the best had been eating the least fiber to start with,” said study leader Lawrence David, an associate professor of molecular genetics and microbiology at Duke University.

The benefit of dietary fiber isn’t just the easier pooping that advertisers tout. Fermentable fiber -- dietary carbohydrates that the human gut cannot process on its own but some bacteria can digest -- is also an essential source of nutrients that your gut microbes need to stay healthy.

“We’ve evolved to depend on nutrients that our microbiomes produce for us,” said Zack Holmes, former PhD student in the David lab and co-author on two new papers about fiber. “But with recent shifts in diet away from fiber-rich foods, we’ve stopped feeding our microbes what they need.”

Thursday, June 30, 2022

Don’t Stress: Maternal Stress Affects Child’s Diet

Photo credit cottonbro
Maternal exposure to stress during pregnancy could have long term detrimental effects on their children’s diets, and thereby on health conditions related to diet – such as increased levels of obesity and obesity-related diseases – according to new research from Michele Belot, professor in the Department of Economics.

“Being exposed to stressful events when pregnant seems to impact the dietary preferences and diet of the children in a negative way, and for reasons that are actually aside from what the mother is eating herself,” says Belot, who has a joint appointment in the School of Industrial and Labor Relations and College of Arts and Sciences. “So that means that we need to think about how to help pregnant women manage stress in a way that could be beneficial for the mother and also for the child.”

In the paper, “Maternal stress during pregnancy and children’s diet: Evidence from a population of low socioeconomic status” published in the journal Nutrition, Belot and her co-authors found that higher than average stress during pregnancy is linked with significantly less healthy food preferences for their children, as well as a weaker preference for sour and bitter foods.

“Stress during pregnancy could have long-term detrimental effects on the next generation in terms of a less healthy diet and subsequent health implications associated with these effects, such as higher rates of obesity and obesity-related diseases,” wrote the authors, which include Nicoli Vitt (University of Bristol), Martina Vecchi (Penn State) and Jonathan James (University of Bath). “As a consequence, we advocate for more research into understanding the sources of maternal stress and the extent to which these can be altered. Prenatal care and preconception counseling could be critical to develop preventive strategies to improve public health.”

For the study, the researchers selected 213 mothers of low socioeconomic status living in the area of Colchester, United Kingdom, with children aged between 2- and 12-years old. Their stress level during pregnancy was assessed using retrospective self-reporting. Specifically, they asked whether mothers experienced one or more of the following life events during the pregnancy with their child: Death of close family member or close friend, changes or difficulties in their relationship, legal issues, changes or difficulties in their family life, health issues, changes or difficulties in their or their spouse’s employment, financial issues, changes in their habits, other potentially stressful events.

Thursday, June 23, 2022

Artificial photosynthesis can produce food without sunshine

Plants are growing in complete darkness in an
acetate medium that replaces biological photosynthesis.
Credit: Marcus Harland-Dunaway/UCR
Full Size Image
Photosynthesis has evolved in plants for millions of years to turn water, carbon dioxide, and the energy from sunlight into plant biomass and the foods we eat. This process, however, is very inefficient, with only about 1% of the energy found in sunlight ending up in the plant. Scientists at UC Riverside and the University of Delaware have found a way to bypass the need for biological photosynthesis altogether and create food independent of sunlight by using artificial photosynthesis.

The research, published in Nature Food, uses a two-step electrocatalytic process to convert carbon dioxide, electricity, and water into acetate, the form of the main component of vinegar. Food-producing organisms then consume acetate in the dark to grow. Combined with solar panels to generate the electricity to power the electrocatalysis, this hybrid organic-inorganic system could increase the conversion efficiency of sunlight into food, up to 18 times more efficient for some foods.

“With our approach we sought to identify a new way of producing food that could break through the limits normally imposed by biological photosynthesis,” said corresponding author Robert Jinkerson, a UC Riverside assistant professor of chemical and environmental engineering.

In order to integrate all the components of the system together, the output of the electrolyzer was optimized to support the growth of food-producing organisms. Electrolyzers are devices that use electricity to convert raw materials like carbon dioxide into useful molecules and products. The amount of acetate produced increased while the amount of salt used decreased, resulting in the highest levels of acetate ever produced in an electrolyzer to date.

“Using a state-of-the-art two-step tandem CO2 electrolysis setup developed in our laboratory, we were able to achieve a high selectivity towards acetate that cannot be accessed through conventional CO2 electrolysis routes,” said corresponding author Feng Jiao at University of Delaware.

Monday, June 13, 2022

A Fresh Take on Fat: Nanoparticle Technology Provides Healthy Trans, Saturated Fat Alternative

Yangchao Luo, an associate professor in the College of Agriculture, Health and Natural Resources.
 Credit: Jason Shelton/UConn Photo

The old adage that oil and water don’t mix isn’t entirely accurate. While it’s true that the two compounds don’t naturally combine, turning them into one final product can be done. You just need an emulsifier, an ingredient commonly used in the food industry.

Yangchao Luo, an associate professor in the College of Agriculture, Health and Natural Resources, is using an innovative emulsification process for the development of a healthier shelf-stable fat for food manufacturing.

Luo is working with something known as high internal phase Pickering emulsions (HIPEs). High internal phase means the mixture is at least 75% oil. Pickering emulsions are those that are stabilized by solid particles.

Previous research in Pickering emulsions has focused on non-edible particles, but Luo is interested in bringing HIPEs to the food industry as an alternative to trans and saturated fats.

This new approach could have a major impact on how food is produced and could make it easier for food manufacturers to include healthier fats.

Many processed foods are loaded with saturated and trans fats for flavor and to extend a product’s shelf life. Consuming these fats can increase the risk of cardiovascular disease, type 2 diabetes, and LDL cholesterol.

Featured Article

Extreme events stress the oceans

Sea snails - the picture shows a pteropod - play an important role in the marine food web. They are especially sensitive to ocean warming an...

Top Viewed Articles