Showing posts with label Science News. Show all posts
Showing posts with label Science News. Show all posts

Thursday, October 21, 2021

Lab-grown ‘mini brains’ hint at treatments for neurodegenerative diseases

Mini brain organoids showing cortical-like structures 
Credit: Andras Lakatos
A common form of motor neuron disease, amyotrophic lateral sclerosis, often overlaps with frontotemporal dementia (ALS/FTD) and can affect younger people, occurring mostly after the age of 40-45. These conditions cause devastating symptoms of muscle weakness with changes in memory, behavior and personality. Being able to grow small organ-like models (organoids) of the brain allows the researchers to understand what happens at the earliest stages of ALS/FTD, long before symptoms begin to emerge, and to screen for potential drugs.

In general, organoids, often referred to as ‘mini organs’, are being used increasingly to model human biology and disease. At the University of Cambridge alone, researchers use them to repair damaged livers, SARS-CoV-2 infection of the lungs and model the early stages of pregnancy, among many other areas of research.

Typically, researchers take cells from a patient’s skin and reprogram the cells back to their stem cell stage – a very early stage of development at which they have the potential to develop into most types of cell. These can then be grown in culture as 3D clusters that mimic particular elements of an organ. As many diseases are caused in part by defects in our DNA, this technique allows researchers to see how cellular changes – often associated with these genetic mutations – lead to disease.

'Raptor-like’ dinosaur revealed to be a timid vegetarian

A life-reconstruction of herbivorous dinosaurs based on 220-million-year-old fossil footprints from Ipswich, Queensland, Australia.Image credit: Anthony Romilio.

The dinosaur footprint is on display at the
Queensland Museum, Brisbane.
Fossil footprints found in an Ipswich coal mine have long been thought to be that of a large ‘raptor-like’ predatory dinosaur, but scientists have found they were instead left by a timid long-necked herbivore.

University of Queensland paleontologist Dr Anthony Romilio recently led an international team to re-analyze the footprints, dated to the latter part of the Triassic Period, around 220 million-year-ago.

“For years it’s been believed that these tracks were made by a massive predator that was part of the dinosaur family Eubrontes, with legs over two meters tall,” Dr Romilio said.

“This idea caused a sensation decades ago because no other meat-eating dinosaur in the world approached that size during the Triassic period.

“But our research shows the tracks were instead made by a dinosaur from the Evazoum family – vegetarian dinosaurs that were smaller, with legs about 1.4 meters tall and a body length of six meters.”

The research team suspected there was something not-quite-right with the original size estimates and there was a good reason for their doubts.

A crab’s inland odyssey


Researchers have discovered the oldest known modern crab — trapped in amber since the time of the dinosaurs.

The 100-million-year-old fossil of the crab, Cretapsara athanata, comes from Myanmar, in Southeast Asia. It fills a major gap in the fossil record for crabs and resets the timetable for when marine crabs made their way inland.

Yale and Harvard paleontologists led the research, which appears in the journal Science Advances.

“This discovery, in a pristine and spectacular 3D preservation — including fine details of the eyes, antennae, mouthparts, and even the gills — represents the oldest evidence of incursions into land and freshwater by crabs,” said co-lead author Javier Luque, a former Yale researcher who is now a research associate at Harvard. “Crabs are primarily a marine group that only conquered land and freshwater much later, about 75 to 50 million years ago. They are largely known by bits and pieces of their claws — never in the stunning detail of our new discovery.”

The researchers said the new species, Cretapsara, was most likely neither a marine crab nor a fully terrestrial creature. Rather, Cretapsara was a freshwater-to-amphibious crab that lived either on the forest floor or in shallow bodies of water near the forest floor.

To selectively kill cancer cells, target a protein channel in the cell's lysosome

Cancer treatments necessarily target unchecked cell growth, and selectively kill cancer cells while sparing normal cells and avoiding general toxicity in the human body.

To develop new treatments for cancer, scientists are focused on finding the malfunctioning machinery within cancer cells that can be targeted using small molecule pharmaceuticals. Now, University of Michigan researchers have identified one of these targets: a zinc and calcium ion permeable channel within a cell’s lysosome, the organelle responsible for recycling cellular waste, nutrient sensing and cell metabolism.

The researchers discovered that this channel is upregulated—meaning both its protein expression and channel activity were substantially increased—in metastatic melanoma cells compared with healthy melanocytes. They found that targeting this channel protein with small pharmaceutical compounds triggers the rapid and selective death of cancer cells while completely sparing normal cells. Their research is published in the journal Cell Reports.

“Many traditional cancer therapies target a well-known cell death pathway called apoptosis to trigger cancer cell death. However, many aggressive cancer cells harbor numerous mutations of genes that help them escape these treatments. We saw an urgent need to develop new therapeutic strategies that target nonapoptotic cell death pathways to eradicate cancer cells,” said Wanlu Du, an assistant research scientist in the U-M Department of Molecular, Cellular, and Developmental Biology.

In metastatic cancers, lysosomes turn hypertrophic, which means they actively contribute to tumor progression by increasing their ability to provide nutrients to the rapidly dividing cells and secreting enzymes to digest extracellular matrix—the material that provides the physical scaffolding for cells to help cancer cell invasion. But designing cancer therapies that target lysosomes may also harm normal cells and tissues by compromising lysosomes’ ability to provide nutrients for healthy cells.

Researchers identify new pathways to target breast cancer


A pathway helping the breast cancer protein BRCA1 repair damaged DNA has been identified by University of Queensland researchers in a study that will inform future targeted therapies.

Professor Robert Parton, Professor Alpha Yap and Dr Kerrie-Ann McMahon from UQ’s Institute for Molecular Bioscience (IMB) identified an association between two proteins that are lost in cancer cells – the well-known BReast CAncer gene 1 (BRCA1) and a new player - cavin3.

“In healthy cells, BRCA1 repairs DNA damage and suppresses tumor formation, but cells with mutations in their BRCA1 genes struggle to keep up with DNA repairs, which is when cancer can take over,” Dr McMahon said.

“We discovered that cavin3 helps BRCA1 function when cells are stressed and that when it’s absent, levels of BRCA1 decrease.

Wednesday, October 20, 2021

Radioactive metals could eventually be used in next-generation cancer therapies

Actinium is a radioactive element that could revolutionize cancer medicine but its chemistry has thus far remained elusive. LLNL and Penn State researchers developed a new approach to study, capture, and purify medical isotopes, including actinium, which leverages a natural protein.
Image Credit: Thomas Reason/LLNL

A protein can be used to recover and purify radioactive metals such as actinium that could be beneficial for next-generation drugs used in cancer therapies and medical imaging, according to new research from Penn State and Lawrence Livermore National Laboratory (LLNL).

Radioactive metals are used in a variety of medical imaging and therapeutic applications. Actinium is a promising candidate for next-generation cancer therapies, and actinium-based therapies have treatment efficacy hundreds of times higher than current drugs. However, the chemistry of this metal is not well understood, and there are several limitations in the supply chain that have kept actinium-based drugs from reaching the market.

“In this study, our team took advantage of a protein my lab previously discovered called lanmodulin and showed that it can be used to improve and simplify the recovery and purification of actinium,” said Joseph Cotruvo Jr., assistant professor of chemistry at Penn State and an author of the paper. The research team presents their results in a paper appearing Oct. 20 in the journal Science Advances.

Tuesday, October 19, 2021

Physicists announce results that boost evidence for new fundamental physics

View of the LHCb detector 
Credit: CERN
In March 2020, the same experiment released evidence of particles breaking one of the core principles of the Standard Model – our best theory of particles and forces – suggesting the possible existence of new fundamental particles and forces.

Now, further measurements by physicists at Cambridge’s Cavendish Laboratory have found similar effects, boosting the case for new physics.

The Standard Model describes all the known particles that make up the universe and the forces that they interact through. It has passed every experimental test to date, and yet physicists know it must be incomplete. It does not include the force of gravity, nor can it account for how matter was produced during the Big Bang, and contains no particle that could explain the mysterious dark matter that astronomy tells us is five times more abundant than the stuff that makes up the visible world around us.

As a result, physicists have long been hunting for signs of physics beyond the Standard Model that might help us to address some of these mysteries.

One of the best ways to search for new particles and forces is to study particles known as beauty quarks. These are exotic cousins of the up and down quarks that make up the nucleus of every atom.

Untangling the heart’s genome: now in 3D

Research led by Australian Regenerative Medicine Institute and Monash Biomedicine Discovery Institute (BDI) researchers at Monash University has combined cutting-edge genomics and 3D “gaming” modelling to understand how all genes are expressed in different parts of the heart, unveiling complex patterns and novel markers. To help visualize this new research, the team, led by Monash group leaders Associate Professor Mirana Ramialison and Professor Jose Polo in collaboration with Dr Fernando Rossello, has developed a powerful tool called 3D-cardiomics.

This work has been recently published in the Journal of Molecular and Cellular Cardiology.

“One of the outstanding challenges in genomics research is understanding the physical context,” noted Associate Professor Ramialison, who has recently moved her research group to the Murdoch Children Research Institute to continue her work in heart development and genomics. “We can detect when gene expression is up or down-regulated in any number of tissues on a global level, but what is more complicated is understanding the spatial relationships in three dimensions. This is key to uncovering developmental and physiological processes of the heart, during both homeostasis and disease.”

The research team micro dissected and sequenced transcriptome-wide 18 anatomical sections of the adult mouse heart with this aim in mind. The study results unveiled known and novel genes that display complex spatial expression across the heart sub-compartments.

Interferon does not improve outcomes for hospitalized adults with COVID-19

Colorized scanning electron micrograph of a human cell
heavily infected with SARS-CoV-2 virus particles (red). NIAID
 A clinical trial has found that treatment with the immunomodulator interferon beta-1a plus the antiviral remdesivir was not superior to treatment with remdesivir alone in hospitalized adults with COVID-19 pneumonia. In addition, in a subgroup of patients who required high-flow oxygen, investigators found that interferon beta-1a was associated with more adverse events and worse outcomes. These findings were published today in the journal The Lancet Respiratory Medicine.

The study, called the Adaptive COVID-19 Treatment Trial 3 (ACTT-3), took place from August 5, 2020 to December 21, 2020. It was sponsored and funded by the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health.

Interferon beta-1a has the same amino acid sequence as a naturally occurring protein called interferon beta, which is in a class of proteins called type 1 interferons. Infected cells normally produce type 1 interferons to help the immune system fight pathogens, especially viruses. Interferon beta has both antiviral and anti-inflammatory properties.

Laboratory studies have shown that the normal type 1 interferon response is suppressed after infection with SARS-CoV-2, the virus that causes COVID-19. In addition, previous studies of hospitalized patients with COVID-19 demonstrated reduced production of interferon in response to SARS-CoV-2 infection in many patients, and this was associated with more severe disease. Other laboratory studies and clinical data supported the hypothesis that treatment with interferon beta-1a might improve health outcomes in people with COVID-19.

Monday, October 18, 2021

Fasting is required to see the full benefit of calorie restriction in mice

Over the last few decades, scientists have discovered that long-term calorie restriction provides a wealth of benefits in animals: lower weight, better blood sugar control, even longer lifespans.

Researchers have largely assumed that reduced food intake drove these benefits by reprogramming metabolism. But a new study from University of Wisconsin­–Madison researchers finds that reduced calorie intake alone is not enough; fasting is essential for mice to derive full benefit.

The new findings lend support to preliminary evidence that fasting can boost health in people, as trends like intermittent fasting continue to hold sway. These human and animal studies have added to the growing picture of how health is controlled by when and what we eat, not just how much.

The research further emphasizes the complexity of nutrition and metabolism and provides guidance to researchers trying to untangle the true causes of diet-induced health benefits in animals and humans.

The researchers discovered that, combined with eating less, fasting reduces frailty in old age and extends the lifespan of mice. And fasting alone can improve blood sugar and liver metabolism.

Surprisingly, mice that ate fewer calories but never fasted died younger than mice that ate as much as they wanted, suggesting that calorie restriction alone may be harmful.

Cell fitness used to determine outcomes in COVID patients

Cell fitness has been identified as a way of predicting health outcomes in COVID patients, according to a University of Queensland study.

The study investigated a cellular fitness marker, known as hfwe-Lose, to identify sub-optimal cells in patients who had been hospitalized or died from COVID at the start of the pandemic.

UQ Diamantina Institute’s Dr Arutha Kulasinghe said researchers conducted post-mortem analysis on COVID-infected lung tissues and found that the cell fitness marker influenced a person’s immune response to infection.

“We found that patients with acute lung injury had higher levels of the biomarker in their lower respiratory tract and areas of cell death,” Dr Kulasinghe said.

“More importantly, we also found that the cell fitness marker outperformed conventional methods, such as age, inflammation and co-existing diseases, in predicting health outcomes, such as hospitalization and death, in COVID patients.”

Assessing the level of risk in developing severe COVID infection is an important consideration in the management of the current pandemic.

Dr Kulasinghe said the study findings might be useful in the early triage of patients who test positive for COVID as the cell fitness marker could be identified via a simple nasal swab.

“The cell fitness marker would enable medical teams to identify patients more likely to develop severe symptoms, provide closer monitoring and earlier access to hospitalization and intensive care,” he said.

“We are now looking to validate our findings in larger patient populations to determine the robustness of the marker.

“The cell fitness marker is part of the body’s process for removing unwanted cells."

This study was conducted in partnership with the University of Copenhagen

Source/Credit: University of Queensland

scn101821_04

J&J coronavirus vaccine produces low antibody response

Photo by Frank Merino from Pexels
In a head-to-head comparison of the three widely used coronavirus vaccines in the United States, the Johnson & Johnson vaccine yielded a strikingly lower antibody response in a Stanford School of Medicine-led study published in the Journal of the American Society of Nephrology.

The study, which analyzed early vaccine immune response in 2,099 dialysis patients, found that 33% of those vaccinated with Johnson & Johnson did not develop coronavirus antibodies, compared with 4% of those who received the Pfizer-BioNTech vaccine and 2% who received the Moderna vaccine. The study is one of the first to compare immune response associated with antibody levels using the same blood test for all three vaccines.

“We weren’t expecting this large a difference between vaccines,” said Shuchi Anand, MD, assistant professor of nephrology and a lead author of the study. “Since part of the rationale for boosters is waning antibody response, our study strongly argues for the need for booster shots for Johnson & Johnson, particularly in the immunocompromised population.”

Less protection

Pablo Garcia, MD, a postdoctoral scholar in nephrology and co-lead author of the study, agreed that people vaccinated with the J&J vaccine are probably less protected from the coronavirus and will “most likely need a booster shot.”

The researchers, who set out to analyze antibody response in the early post-vaccination period, collaborated with a nonprofit dialysis provider that treats kidney patients undergoing dialysis in California, Tennessee, Texas and New Jersey. The tests were conducted between 28 and 60 days after each patient had been fully vaccinated.

A new treatment for glaucoma?

Photo by Ksenia Chernaya from Pexels
A Northwestern Medicine study in mice has identified new treatment targets for glaucoma, including preventing a severe pediatric form of glaucoma, as well as uncovering a possible new class of therapy for the most common form of glaucoma in adults.

In people with high pressure glaucoma, fluid in the eye doesn’t properly drain and builds up pressure on the optic nerve, leading to vision loss. It affects 60 million people worldwide and is the most common cause of blindness in people over 60 years old.

While there are a few treatments available for open angle glaucoma, the most common form of glaucoma in adults (eye drops, oral medication, laser treatments), there are no cures, and a severe form of glaucoma in children between birth and three years old known as primary congenital glaucoma can only be treated with surgery.

“Although primary congenital glaucoma is much rarer than open angle glaucoma, it is devastating for children,” said corresponding author Dr. Susan Quaggin, chief of nephrology and hypertension in the Department of Medicine at Northwestern University Feinberg School of Medicine. “New treatments and new classes of treatments are urgently needed to slow vision loss in both forms.

Using gene editing, the scientists in the study developed new models of glaucoma in mice that resembled primary congenital glaucoma. By injecting a new, long-lasting and non-toxic protein treatment (Hepta-ANGPT1) into mice, the scientists were able to replace the function of genes that, when mutated, cause glaucoma. With this injectable treatment, the scientists also successfully prevented glaucoma from ever forming in one model. This same therapy, when injected into the eyes of healthy adult mice, reduced pressure in the eyes, supporting it as a possible new class of therapy for the most common cause of glaucoma in adults (high intraocular pressure open angle glaucoma).

The study, “Cellular crosstalk regulates the aqueous humor outflow pathway and provides new targets for glaucoma therapies," was published Oct. 18 in the journal Nature Communications. (PDF)

The next step is to develop the appropriate delivery system for the successful new protein treatment in patients and bring it to production, Quaggin said.

Uncovering the secrets of ultra-low frequency gravitational waves

An artist's impression of the colliding bubbles that can produce extremely low frequency gravitational waves during a cosmological phase transition in the early Universe.
Image credit: Riccardo Buscicchio.

New methods of detecting ultra-low frequency gravitational waves can be combined with other, less sensitive measurements to deliver fresh insights into the early development of our universe, according to researchers at the University of Birmingham.

Gravitational waves - ripples in the fabric of Einstein's spacetime - that cross the universe at the speed of light have all sorts of wavelengths, or frequencies. Scientists have not yet managed to detect gravitational waves at extremely low ‘nanohertz’ frequencies, but new approaches currently being explored are expected to confirm the first low frequency signals quite soon.

The main method uses radio telescopes to detect gravitational waves using pulsars – exotic, dead stars, that send out pulses of radio waves with extraordinary regularity. Researchers at the NANOGrav collaboration, for example, use pulsars to time to exquisite precision the rotation periods of a network, or array, of millisecond pulsars – astronomers’ best approximation of a network of perfect clocks - spread throughout our galaxy. These can be used to measure the fractional changes caused by gravitational waves as they spread through the universe.

Genetic risk for clinical depression linked to physical symptoms

Dr Enda Byrne
People with higher genetic risk of clinical depression are more likely to have physical symptoms such as chronic pain, fatigue and migraine, University of Queensland researchers have found.

Dr. Enda Byrne from UQ’s Institute for Molecular Bioscience said depression was a serious disorder with lifetime risks of poor health.

“A large proportion of people with clinically-diagnosed depression present initially to doctors with physical symptoms that cause distress and can severely impact on people’s quality of life,” Dr. Byrne said.

Our research aimed to better understand the biological basis of depression and found that assessing a broad range of symptoms was important.

“Ultimately, our research aimed to better understand the genetic risks and generate more accurate risk scores for use in research and healthcare.”

Despite recent breakthroughs, Dr. Byrne said finding additional genetic risk factors was difficult because of the variety of patient ages, their symptoms, responses to treatment and additional mental and physical disorders.

Friday, October 15, 2021

One coronavirus vaccine may protect against other coronaviruses

Study is the first to demonstrate cross-protective immunity by vaccines

Northwestern Medicine scientists have shown for the first time that coronavirus vaccines and prior coronavirus infections can provide broad immunity against other, similar coronaviruses. The findings build a rationale for universal coronavirus vaccines that could prove useful in the face of future epidemics.

“Until our study, what hasn’t been clear is if you get exposed to one coronavirus, could you have cross-protection across other coronaviruses? And we showed that is the case,” said lead author Pablo Penaloza-MacMaster, assistant professor of microbiology-immunology at Northwestern University Feinberg School of Medicine.

The findings were recently published in the Journal of Clinical Investigation.

The three main families of coronaviruses that cause human disease are:

  1. Sarbecovirus, which includes the SARS-CoV-1 strain that was responsible for the 2003 outbreak of Severe Acute Respiratory Syndrome (SARS), as well as SARS-CoV-2, which is responsible for COVID-19
  2. Embecovirus, which includes OC43, which is often responsible for the common cold
  3. Merbecovirus, which is the virus responsible for Middle East Respiratory Syndrome (MERS), first reported in 2012.

Vaccines demonstrated cross-protective immunity

Plasma from humans who had been vaccinated against SARS-CoV-2 produced antibodies that were cross-reactive (potentially providing protection) against SARS-CoV-1 and the common cold coronavirus (OC43), the study found. The study also found mice immunized with a SARS-CoV-1 vaccine developed in 2004 generated immune responses that protected them from intranasal exposure by SARS-CoV-2. Lastly, the study found prior coronavirus infections can protect against subsequent infections with other coronaviruses.

Contraceptive pill can reduce type 2 diabetes risk in women with polycystic ovary syndrome

A study led by the University of Birmingham has revealed for the first time that the contraceptive pill can reduce the risk of type 2 diabetes by over a quarter in women with polycystic ovary syndrome (PCOS).

The research findings also show that women with PCOS have twice the risk of developing type 2 diabetes or pre-diabetes (dysglycemia) – highlighting the urgent need to find treatments to reduce this risk.

In addition to the risk of type 2 diabetes, PCOS – which affects 10% of women world-wide - is also associated with a number of other conditions in the long-term, such as endometrial cancer, cardiovascular disease, and non-alcohol related fatty liver disease (NAFLD).

Symptoms of PCOS include irregular periods or no periods at all, which can lead to fertility issues, and many suffer from unwanted hair growth (known as ‘hirsutism’) on the face or body, hair loss on the scalp, and oily skin or acne. These symptoms are caused by high levels of hormones called androgens in the blood of women with PCOS.

Women with PCOS also often struggle with weight gain and the cells in their body are often less responsive to insulin – the hormone that allows the body to absorb glucose (blood sugar) into the cells for energy. This reduced response to insulin can lead to elevated blood glucose levels and can cause the body to make more insulin, which in turn causes the body to make more androgens. The androgens further increase insulin levels - driving a vicious circle.

A decade after gene therapy

Evangelina Vaccaro, above, who received the gene therapy
 for ADA-SCID in a clinical trial in 2012.
Credit: Courtesy of Alysia Padilla-Vaccaro
Over a decade ago, UCLA physician-scientists began using a pioneering gene therapy they developed to treat children born with a rare and deadly immune system disorder. They now report that the effects of the therapy appear to be long-lasting, with 90% of patients who received the treatment eight to 11 years ago still disease-free.

ADA-SCID, or adenosine deaminase–deficient severe combined immunodeficiency, is caused by mutations in the gene that creates the ADA enzyme, which is essential to a functioning immune system. For babies with the disease, exposure to everyday germs can be fatal, and if untreated, most will die within the first two years of life.

In the gene therapy approach detailed in the new paper, Dr. Donald Kohn of UCLA and his colleagues removed blood-forming stem cells from each child’s bone marrow, then used a specially modified virus, originally isolated from mice, to guide healthy copies of the ADA gene into the stem cells’ DNA. Finally, they transplanted the cells back into the children’s bone marrow. The therapy, when successful, prompts the body to produce a continuous supply of healthy immune cells capable of fighting infections. Because the transplanted stem cells are the baby’s own, there is no risk of rejection.

Thursday, October 14, 2021

New technique, effective in mice, could help advance the use of probiotics

Quanyin Hu
Scientists studying probiotics, beneficial bacteria that show promise for their ability to treat inflammatory bowel disease and other intestinal disorders, continue to face a problem: how to keep probiotics from getting obliterated in the gut before they can be helpful.

Researchers at the University of Wisconsin–Madison School of Pharmacy think they have a solution involving a dual-layer protection system that can keep probiotic bacteria alive in the lower intestine long enough to help treat or prevent colitis in a mouse model of the disease.

Quanyin Hu and postdoctoral researcher Jun Liu have filed for a patent on their double-protection technique and, with their collaborators, published their findings in the journal Nano Today.

If the new technique shows similar effectiveness in clinical trials, it could help advance the use of probiotics.

The research addresses one of the biggest limitations of treating disease with probiotics, which are bacteria that promote healthy tissue development and improve the gut microbiome.

“When you transfer these bacteria through the oral route, most of them are getting killed by the acidic environment of the stomach. Or they’re getting cleared out of the intestine because they aren’t adhering,” says Hu, the senior author of the report. “Our double protection technique addresses these limitations.”

Gel fights drug-resistant bacteria

In the fight against multidrug-resistant bacteria, scientists in Sweden have developed a new kind of antibiotic-free protection for wounds that kills drug-resistant bacteria and induces the body’s own immune responses to fight infections.

Reporting in the Journal of the American Chemical Society, researchers from KTH Royal Institute of Technology, Karolinska Institutet and Karolinska University Hospital say that the new treatment is based on specially-developed hydrogels consisting of polymers known as dendritic macromolecules.

KTH Professor Michael Malkoch says the hydrogels are formed spontaneously when sprayed on wounds and 100 percent degradable and non-toxic.

“Dendritic hydrogels are excellent for wound dressing materials because of their soft, adhesive and pliable tactile properties, which provide ideal contact on the skin and maintain the moist environment beneficial for optimal wound healing,” he says.

Before and after. On the left, bacteria prior to exposure to the dendritic hydrogel, and on the right, the bacteria is visibly damaged.

The antibacterial effects of the hydrogels have yet to be fully understood, but the key lies in these macromolecules’ structure. It’s distinguished by well-ordered branches that terminate with a profusion of cationic, charged contact points.

Featured Article

Electric trucks: ultra-fast charging in the megawatt range

Trucks with electric drives could soon be used in long-distance transport. Image: iStockphoto.com / Chesky_W It is an ambitious goal: By 203...

Top Viewed Articles