 |
Caption:MIT chemists have created a fluorescent, boron-containing molecule that is stable when exposed to air and can emit light in the red and near-infrared range. The dye can be made into crystals (shown in these images), films, or powders. The images at top were taken in ambient light and the images at bottom in UV light. Image Credit: Courtesy of the researchers (CC BY-NC-ND 4.0) |
MIT chemists have designed a new type of fluorescent molecule that they hope could be used for applications such as generating clearer images of tumors.
The new dye is based on a borenium ion — a positively charged form of boron that can emit light in the red to near-infrared range. Until recently, these ions have been too unstable to be used for imaging or other biomedical applications.
In a study appearing today in Nature Chemistry, the researchers showed that they could stabilize borenium ions by attaching them to a ligand. This approach allowed them to create borenium-containing films, powders, and crystals, all of which emit and absorb light in the red and near-infrared range.
That is important because near-IR light is easier to see when imaging structures deep within tissues, which could allow for clearer images of tumors and other structures in the body.
“One of the reasons why we focus on red to near-IR is because those types of dyes penetrate the body and tissue much better than light in the UV and visible range. Stability and brightness of those red dyes are the challenges that we tried to overcome in this study,” says Robert Gilliard, the Novartis Professor of Chemistry at MIT and the senior author of the study.