Finding ways to capture, store, and use carbon dioxide (CO2) remains an urgent global problem. As temperatures continue to rise, keeping CO2 from entering the atmosphere can help limit warming where carbon-based fuels are still needed.
Significant progress has been made in creating affordable, practical carbon capture technologies. Carbon-capturing liquids, referred to as solvents when they are present in abundance, can efficiently grab CO2 molecules from coal-fired power plants, paper mills, and other emission sources. However, these all work through the same fundamental chemistry. Or so researchers assumed.
In a new work published in Nature Chemistry, scientists were surprised to find that a familiar solvent is even more promising than originally anticipated. New details about the solvent’s underlying structure suggest that the liquid could hold twice as much CO2 as previously thought. The newly revealed structure could also hold the key to creating a suite of carbon-based materials that could help keep even more CO2 out of the atmosphere.
The Pacific Northwest National Laboratory (PNNL) team developed the solvent several years ago and has studied it in a variety of scenarios. The team has worked to dial down the costs of using the solvent and turn up its efficiency. Last year, they revealed the least costly carbon capture system to date. It was during this research that the team noticed something odd.