. Scientific Frontline: Neuroscience
Showing posts with label Neuroscience. Show all posts
Showing posts with label Neuroscience. Show all posts

Tuesday, December 9, 2025

Brain discovery opens door to earlier detection of metabolic syndrome in women

Image Credit: Scientific Frontline / stock image

McGill University researchers have identified a brain function that helps explain why childhood stress raises metabolic health risks for some women later in life. 

A new study found that variations in the brain’s insulin receptor network affect how women respond to early-life adversity. This effect has a lesser impact in men, suggesting there is a sex-specific process at play. 

The findings, published in Communications Biology (Nature Portfolio), point to the brain’s insulin receptor network as a promising avenue for earlier detection and future prevention strategies for metabolic syndrome, a major driver of cardiovascular disease that affects about one in five Canadian adults. 

“We know that women who face childhood adversity are at higher risk for metabolic disease, and this study helps identify who is most susceptible,” said senior author Dr. Patricia Pelufo Silveira, professor of psychiatry at McGill and researcher at the Douglas Research Centre. 

Saturday, December 6, 2025

What Is: Dementia

Illustration Credit: Scientific Frontline

The End of the Passive Era

The year 2025 marks a definitive inflection point in the history of neuroscience and geriatric medicine. For decades, the field of dementia care was characterized by a certain fatalism—a paradigm of "diagnose and manage" where the clinician’s role was largely to document decline and support the family. That era has officially closed. We have entered the age of precision intervention, defined by the ability to detect neurodegenerative pathology in blood plasma decades before symptoms arise, the availability of disease-modifying immunotherapies that clear toxic proteins from the brain, and a nuanced biological understanding that has shattered the monolithic concept of "senility" into a spectrum of distinct, treatable molecular events.

Our Scientific Frontline report provides an exhaustive analysis of the dementia landscape as it stands in late 2025. It synthesizes data from the latest clinical trials, including the landmark approval of subcutaneous maintenance dosing for anti-amyloid therapies, and examines the emerging economic reality where the global cost of dementia is projected to triple by mid-century. We explore the biological underpinnings of conditions ranging from classic Alzheimer’s Disease to the newly characterized Limbic-predominant Age-related TDP-43 Encephalopathy (LATE), and we evaluate the transformative potential of 14 modifiable risk factors that could prevent nearly half of all cases.

Memory research: How respiration shapes remembering

Recording of brain activity using EEG.
Photo Credit: © LMU / Johanna Weber

First and foremost, we breathe to absorb oxygen – but this vital rhythm could also have other functions. Over the past few years, a range of studies have shown that respiration influences neural processes, including the processing of stimuli and memory processes. LMU researchers led by Dr. Thomas Schreiner, leader of an Emmy Noether junior research group at the Department of Psychology, in collaboration with colleagues from the Max Planck Institute for Human Development in Berlin and the University of Oxford, have analyzed how respiration influences the retrieval of previously learned materials and recorded what happens in the brain during this process. 

For the experiment, 18 participants learned to associate 120 images with certain words. The participants were then asked to recall these associations and then asked to recall them again after a two-hour afternoon nap. While this was happening, the researchers recorded their breathing as well as their brain activity via EEG. 

Tuesday, December 2, 2025

Our brains recognize the voices of our primate cousins

When participants heard chimpanzee vocalisations, this response was clearly distinct from that triggered by bonobos or macaques.
Image Credit: © L. Ceravolo

The brain doesn’t just recognize the human voice. A study by the University of Geneva (UNIGE) shows that certain areas of our auditory cortex respond specifically to the vocalizations of chimpanzees, our closest cousins both phylogenetically and acoustically. This finding, published in the journal eLife, suggests the existence of subregions in the human brain that are particularly sensitive to the vocalizations of certain primates. It opens a new window on the origin of voice recognition, which could have implications for language development. 

Our voice is a fundamental sign of social communication. In humans, a large part of the auditory cortex is dedicated to its analysis. But do these skills have older roots? To find out, scientists from the UNIGE’s Faculty of Psychology and Educational Sciences adopted an approach based on the evolution of species. By comparing the neural processing of vocalizations emitted by species close to humans, such as chimpanzees, bonobos and macaques, it is possible to observe what our brain shares, or does not share, with that of other primates and thus to investigate the emergence of the neural bases of vocal communication, long before the appearance of language. 

Wednesday, November 26, 2025

Coffee linked to slower biological ageing among those with severe mental illness – up to a limit

Photo Credit: Julia Florczak

New research from King’s College London finds that coffee consumption within the NHS recommended limit is linked to longer telomere lengths – a marker of biological ageing – among people with bipolar disorder and schizophrenia. The effect is comparable to roughly five years younger biological age. 

Telomeres are structures that protect DNA. As people get older, their telomeres shorten as part of the natural human ageing process. This process has been shown to be accelerated among people with severe mental illness, such as bipolar disorder and schizophrenia, who have an average life expectancy 15 years shorter than the general population. 

Previous research shows that coffee has health benefits. It may reduce oxidative stress in the general population, helping slow biological ageing processes like telomere shortening. The new study, published in BMJ Mental Health, explores whether coffee consumption could slow this ageing process among those with severe mental illness. 

New study shows why some minds can’t switch off at night

Photo Credit: Cottonbro Studio

Australian researchers have found compelling evidence that insomnia may be linked to disruptions in the brain’s natural 24-hour rhythm of mental activity, shedding light on why some people struggle to ‘switch off’ at night. 

Published in Sleep Medicine, the study led by the University of South Australia (UniSA) is the first to map how cognitive activity fluctuates across the day in individuals with chronic insomnia, compared to healthy sleepers. 

Insomnia affects about 10% of the population, and up to 33% of older adults, with many reporting an overactive or ‘racing’ mind at night. 

While this has long been linked to cognitive hyperarousal, it has remained unclear where these thought patterns stem from. 

Tuesday, November 25, 2025

Concordia researchers identify key marker linking coronary artery disease to cognitive decline

Zacharie Potvin-Jutras, with Claudine Gauthier:
“Our goal is to examine conditions at the onset of a heart disease, before there has been any significant impact on the brain”
Photo Credit: Courtesy of Concordia University

Individuals with coronary artery disease (CAD) — a constricting or blocking of blood vessels feeding the heart — face increased risks of strokes, cognitive impairment and dementia. However, the link between CAD and cognitive function is not fully understood. 

A new study led by Concordia researchers looks at how the disease affects the brain’s white matter, the network of nerve fibers that connects different regions of the brains and is critical to transmitting information efficiently. 

The study, published in the Journal of Neuroscience, applied a novel multivariate approach using 12 separate metrics. The researchers compared test results and MRI scans of 43 patients with CAD to those of 36 healthy individuals. All participants were over the age of 50. 

Monday, November 24, 2025

Stroke scientists gather more evidence for presence of ‘gut-brain axis’

Image Credit: Scientific Frontline / stock image

Research on mice by scientists at The University of Manchester has shed new light on why the guts’ immune system changes after a stroke and how it might contribute to gastro-intestinal problems. 

Published in Brain, Behavior and Immunity, the study adds to the emerging idea of the “gut-brain axis” – in which scientists suggest allows communication between the two organs in both health and disease. 

The study casts more light on the biology of stroke, a life-threatening medical emergency that disrupts blood flow to parts of the brain often causing long-term effects to mobility and cognition. 

Stroke patients are also at risk of secondary bacterial infections and often exhibit gastrointestinal symptoms including difficulty swallowing and constipation. 

Untreated sleep apnea raises risk of Parkinson’s

 A new study involving millions of electronic health records reveals that untreated obstructive sleep apnea raises the risk of Parkinson’s disease.
Image Credit: Scientific Frontline / AI generated

New research reveals that people with untreated obstructive sleep apnea have a higher risk of developing Parkinson’s disease. However, they can significantly reduce the risk by improving the quality of their sleep by using continuous positive airway pressure, or CPAP.

The study, which published today in the journal JAMA Neurology, examined electronic health records covering more than 11 million U.S. military veterans who received care through the Department of Veterans Affairs between 1999 and 2022.

The research was led by Oregon Health & Science University and the Portland VA Health Care System.

Parkinson’s is a neurodegenerative condition that affects an estimated 1 million people nationwide, with the risk rising incrementally year by year for people over age 60.

Sunday, November 23, 2025

Nasal drops fight brain tumors noninvasively

Researchers at WashU Medicine have developed a noninvasive medicine delivered through the nose that successfully eliminated deadly brain tumors in mice. The medicine is based on a spherical nucleic acid, a nanomaterial (labeled red) that travels along a nerve (green) from the nose to the brain, where it triggers an immune response to eliminate the tumor.
Image Credit: Courtesy of Alexander Stegh

Researchers at Washington University School of Medicine in St. Louis, along with collaborators at Northwestern University, have developed a noninvasive approach to treat one of the most aggressive and deadly brain cancers. Their technology uses precisely engineered structures assembled from nano-size materials to deliver potent tumor-fighting medicine to the brain through nasal drops. The novel delivery method is less invasive than similar treatments in development and was shown in mice to effectively treat glioblastoma by boosting the brain’s immune response.

Glioblastoma tumors form from brain cells called astrocytes and are the most common kind of brain cancer, affecting roughly three in 100,000 people in the U.S. Glioblastoma generally progresses very quickly and is almost always fatal. There are no curative treatments for the disease, in part because delivering medicines to the brain remains extremely challenging.

Friday, November 21, 2025

An electric discovery: Pigeons detect magnetic fields through their inner ear

Photo Credit: Nancy Hughes

In 1882, the French Naturalist Camille Viguier was amongst the first to propose the existence of a magnetic sense. His speculation proved correct; many animals – from bats to migratory birds and sea turtles use the Earth’s magnetic field to navigate. Yet despite decades of research, scientists still know surprisingly little about the magnetic sense. How do animals detect magnetic fields? Which brain circuits process the information? And where in the body is this sensory system located? 

Viguier audaciously proposed that magnetic sensing might occur in the inner ear relying on the generation of small electric currents. This idea was ignored and then forgotten; a historical musing lost with the passage of time. Now more than a century later it has been resurrected by neuroscientists at LMU in a paper published in Science. A team led by Professor David Keays took an unbiased approach to studying pigeon brains exposed to magnetic fields. 

How the cheese-noodle principle could help counter Alzheimer's

Jinghui Luo is a researcher at the Center for Life Sciences at the Paul Scherrer Institute PSI. He studies accumulations of so-called amyloid proteins, which lead to nerve damage in the brain. His research aims to help mitigate neurodegenerative diseases such as Alzheimer's and Parkinson's in the long term.  Photo Credit: © Paul Scherrer Institute PSI/Markus Fischer

Researchers at the Paul Scherrer Institute PSI have clarified how spermine – a small molecule that regulates many processes in the body's cells – can guard against diseases such as Alzheimer's and Parkinson's: it renders certain proteins harmless by acting a bit like cheese on noodles, making them clump together. This discovery could help combat such diseases. The study has now been published in the journal Nature Communications.

Our life expectancy keeps rising – and as it does, age-related illnesses, including neurodegenerative diseases such as Alzheimer's and Parkinson's, become increasingly common. These diseases are caused by accumulations in the brain of harmful protein structures consisting of incorrectly folded amyloid proteins. Their shape is reminiscent of fibers or spaghetti. To date, there is no effective therapy to prevent or eliminate such accumulations. 

Tuesday, November 11, 2025

New ultrasound technique could help aging and injured brains

Raag Airan, Matine Azadian, Payton Martinez, and Yun Xiang in the lab. Azadian is holding a version of their ultrasound apparatus designed for humans.
Photo Credit: Andrew Brodhead

Just like your body needs a bath now and then, so too does your brain – but instead of a tub filled with hot water, your brain has cerebrospinal fluid, which flows around inside the brain and helps clear away waste products, misplaced blood cells, and other sometimes-toxic debris.

The trouble is, that natural brain-bathing system can break down as people age or after a brain injury, such as a stroke – and there aren’t any particularly good ways to help the brain out in those situations. Indeed, current ideas to promote cerebrospinal fluid cleaning are either rather invasive or require drugs that may not be safe or effective in people.

Fortunately, a team of Stanford researchers has found a radically simple tool that may help the brain wash itself out without the need for drugs or invasive procedures: ultrasound, the same tool obstetricians regularly use at prenatal checkups.

Nonsurgical treatment shows promise for targeted seizure control

Jerzy Szablowski
Photo Credit: Jeff Fitlow/Rice University

Rice University bioengineers have demonstrated a nonsurgical way to quiet a seizure-relevant brain circuit in an animal model. The team used low-intensity focused ultrasound to briefly open the blood-brain barrier (BBB) in the hippocampus, delivered an engineered gene therapy only to that region and later flipped an on-demand “dimmer switch” with an oral drug. The research shows that a one-time, targeted procedure can modulate a specific brain region without impacting off-target areas of the brain.

“Many neurological diseases are driven by hyperactive cells at a particular location in the brain,” said study lead Jerzy Szablowski, assistant professor of bioengineering and a member of the Rice Neuroengineering Initiative. “Our approach aims the therapy where it is needed and lets you control it when you need it, without surgery and without a permanent implant.”

Friday, November 7, 2025

Researchers create simple method for viewing microscopic fibers

Computational scattered light imaging shows the orientation and organization of tissue fibers at micrometer resolution. The colors represent different fiber orientations.
Image Credit: Marios Georgiadis

Every tissue in the human body contains a network of microscopic fibers. Muscle fibers direct mechanical forces, intestinal fibers are involved in gut mobility, and brain fibers transmit signals and form the communication network to drive cognition. Together, these fibers shape how organs function and help maintain their structure.

Likewise, almost all diseases involve some form of degeneration or disruption of these fiber networks. In the brain, this translates to disturbances in neural connectivity that are found in all neurological disorders.

Despite their biological importance, these microscopic fibers have been difficult to study, as scientists have struggled to visualize their orientations within tissues.

Now, Stanford Medicine researchers and their colleagues have developed a simple, low-cost approach that makes those hidden structures visible in remarkable detail.

Wednesday, November 5, 2025

Prime time for fiber optics to take a deep dive into brain circuits

Fiber-optic technology is being refined for brain research. WashU engineers have developed a way to vastly expand the utility of a single fiber-optic line that can fit in the brain.
Image Credit: JJ Ying

Fiber-optic technology revolutionized the telecommunications industry and may soon do the same for brain research.

A group of researchers from Washington University in St. Louis in both the McKelvey School of Engineering and the School of Medicine have created a new kind of fiber-optic device to manipulate neural activity deep in the brain. The device, called PRIME (Panoramically Reconfigurable IlluMinativE) fiber, delivers multi-site, reconfigurable optical stimulation through a single, hair-thin implant.

“By combining fiber-based techniques with optogenetics, we can achieve deep-brain stimulation at unprecedented scale,” said Song Hu, professor of biomedical engineering, who collaborated with the laboratory of Adam Kepecs, professor of neuroscience and psychiatry at WashU Medicine. 

Wednesday, October 29, 2025

Bioinformatics Uncovers Regenerative Therapy for Spinal Cord Injury

Human brain cells are notoriously difficult to culture in the lab, but UC San Diego researchers successfully grew human brain cells, shown here, in order to test a new treatment approach for spinal cord injury.
Photo Credit: Mark H. Tuszynski/UC San Diego Health Sciences

Spinal cord injury (SCI) remains a major unmet medical challenge, often resulting in permanent paralysis and disability with no effective treatments. Now, researchers at University of California San Diego School of Medicine have harnessed bioinformatics to fast-track the discovery of a promising new drug for SCI. The results will also make it easier for researchers around the world to translate their discoveries into treatments.

One of the reasons SCI results in permanent disability is that the neurons that form our brain and spinal cord cannot effectively regenerate. Encouraging neurons to regenerate with drugs offers a promising possibility for treating these severe injuries. 

The researchers found that under specific experimental conditions, some mouse neurons activate a specific pattern of genes related to neuronal growth and regeneration. To translate this fundamental discovery into a treatment, the researchers used data-driven bioinformatics approaches to compare their pattern to a vast database of compounds, looking for drugs that could activate these same genes and trigger neurons to regenerate.

Dopamine increases willingness to wait for rewards

L-DOPA, a precursor of the neurotransmitter dopamine, makes humans wait longer for rewards, as new research addresses gaps in earlier studies
Photo Credit: Tim Mossholder

A research team from the University of Cologne conducted one of the most comprehensive studies on dopamine and decision-making in humans so far, providing evidence for effects of the former on the latter. Dopamine is a neurotransmitter involved in several functions, including motivation and reward. The team at the Psychology Department led by Dr Elke Smith and Professor Dr Jan Peters found that L-DOPA, a precursor of dopamine that increases dopamine levels in the brain, slightly increased the study participants’ willingness to wait for larger delayed rewards, decreasing impulsivity by about a 20 percent compared to placebo. This modest effect challenges some earlier influential findings from much smaller studies, which had found that L-DOPA increased impulsive choices. The study “Dopamine and temporal discounting: revisiting pharmacology and individual differences” has appeared in the Journal of Neuroscience.

Scientists uncover how the brain falls asleep

Scientists have been able to pinpoint, for the first time, the exact moment the brain transitions into sleep, and precisely map the unfolding process in real time.
Photo Credit: Zohre Nemati

In the new study, the researchers demonstrated that the human brain falls asleep abruptly, rather than gradually, with a ‘tipping point’ marking the transition from wakefulness into sleep. They were then able to predict the momentary progression into sleep with unprecedented precision. 

The findings could be used to develop new ways to diagnose and treat sleep disorders, such as insomnia, and as a marker of brain health in the context of ageing and neurodegenerative disease, and even to improve how we monitor anesthesia during surgical procedures.  

Tuesday, October 28, 2025

Rare Brain Cell May Hold the Key to Preventing Schizophrenia Symptoms

A new study from the University of Copenhagen shows that a targeted intervention in a specific type of brain cell can change behavior in mice with symptoms resembling schizophrenia. The researchers hope that this knowledge may eventually pave the way for more targeted treatments for conditions such as schizophrenia.
Image Credit: Scientific Frontline / AI generated

A specific type of brain cell is abnormally active in mice exhibiting behavior reminiscent of schizophrenia, according to a new study from the University of Copenhagen. By dampening the activity of these cells, researchers were able to restore the animals’ behavior—an insight that may pave the way for a new preventive treatment.

Difficulty completing everyday tasks. Failing memory. Unusually poor concentration.

For many people living with schizophrenia, cognitive challenges are part of daily life. Alongside well-known symptoms such as hallucinations and delusions, these difficulties can make it hard to live the life they want. That is why researchers at the University of Copenhagen are working to find ways to prevent such symptoms - and they may now be one step closer.

In a new study, researchers discovered that a specific type of brain cell is abnormally active in mice displaying schizophrenia-like behavior. When the researchers reduced the activity of these cells, the mice’s behavior changed.

“Current treatments for cognitive symptoms in patients with diagnoses such as schizophrenia are inadequate. We need to understand more about what causes these cognitive symptoms that are derived from impairments during brain development. Our study may be the first step toward a new, targeted treatment that can prevent cognitive symptoms,” says Professor Konstantin Khodosevich from the Biotech Research and Innovation Center at the University of Copenhagen, and one of the researchers behind the study.

Featured Article

What Is: Dementia

Illustration Credit: Scientific Frontline The End of the Passive Era The year 2025 marks a definitive inflection point in the history of neu...

Top Viewed Articles