Showing posts with label Neuroscience. Show all posts
Showing posts with label Neuroscience. Show all posts

Friday, September 30, 2022

Traumatic brain injury ‘remains a major global health problem’ say experts

Photo Credit: Ian Valerio

The report – the 2022 Lancet Neurology Commission – has been produced by world-leading experts, including co-lead author Professor David Menon from the Division of Anesthesia at the University of Cambridge.

 "Over the last decade, large international collaborations have provided important information to improve understanding and care of TBI. However, significant problems remain, especially in low- and middle-income countries"
David Menon

The Commission documents traumatic brain injury (TBI) as a global public health problem, which afflicts 55 million people worldwide, costs over US$400 billion per year, and is a leading cause of injury-related death and disability.

TBI is not only an acute condition but also a chronic disease with long-term consequences, including an increased risk of late-onset neurodegeneration, such as Parkinson’s disease and dementia. Road traffic incidents and falls are the main causes, but while in low- and middle-income countries, road traffic accidents account for almost three times the number of TBIs as falls, in high-income countries falls cause twice the number of TBIs compared to road traffic accidents. These data have clear consequences for prevention.

Over 90% of TBIs are categorized as ‘mild’, but over half of such patients do not fully recover by six months after injury. Improving outcome in these patients would be a huge public health benefit. A multidimensional approach to outcome assessment is advocated, including a focus on mental health and post-traumatic stress disorder. Outcome after TBI is poorer in females compared with males, but reasons for this are not clear.

Thursday, September 29, 2022

Making lab-grown brain organoids ‘brainier

 Slices of mini–brain organoids with neural stem cells (red) and cortical neurons (green).
Credit: Hajime Ozaki, Watanabe lab/UCI

By using stem cells to grow miniature brain-like organs in the lab, scientists have opened a new avenue for studies of neurological development, disease and therapies that can’t be conducted in living people. But not all mini–brain organoids are created equal and getting them to precisely mimic the human brain tissues they’re modeling has been a persistent challenge.

“Right now, it’s like the Wild West because there is no standard method for generating mini–brain organoids,” said Bennett Novitch, a member of the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA and the senior author of a new paper on the topic. “Every neuroscientist wants to make a brain organoid model of their favorite disease, and yet everyone’s organoids do not always look alike.”

In fact, because there is no common protocol for their production and a lack of quality-control guidelines, organoids can vary from lab to lab — and even from batch to batch — which means that a finding made in one organoid may not hold true in another.

“If my lab and another lab down the hall were to conduct drug screens using mini–brain organoid models of the same disorder, we could still get different results,” said Momoko Watanabe, the new paper’s first author and an assistant professor of anatomy and neurobiology at UC Irvine. “We won’t know whose findings are correct because the differences we’re seeing could be reflections of how our models differ rather than reflections of the disease.”

Tuesday, September 27, 2022

Neurodegenerative disease can progress in newly identified patterns

Neurodegenerative diseases — like amyotrophic lateral sclerosis (ALS, or Lou Gehrig's disease), Alzheimer’s, and Parkinson’s — are complicated, chronic ailments that can present with a variety of symptoms, worsen at different rates, and have many underlying genetic and environmental causes, some of which are unknown. ALS, in particular, affects voluntary muscle movement and is always fatal, but while most people survive for only a few years after diagnosis, others live with the disease for decades. Manifestations of ALS can also vary significantly; often slower disease development correlates with onset in the limbs and affecting fine motor skills, while the more serious, bulbar ALS impacts swallowing, speaking, breathing, and mobility. Therefore, understanding the progression of diseases like ALS is critical to enrollment in clinical trials, analysis of potential interventions, and discovery of root causes.

However, assessing disease evolution is far from straightforward. Current clinical studies typically assume that health declines on a downward linear trajectory on a symptom rating scale, and use these linear models to evaluate whether drugs are slowing disease progression. However, data indicate that ALS often follows nonlinear trajectories, with periods where symptoms are stable alternating with periods when they are rapidly changing. Since data can be sparse, and health assessments often rely on subjective rating metrics measured at uneven time intervals, comparisons across patient populations are difficult. These heterogenous data and progression, in turn, complicate analyses of invention effectiveness and potentially mask disease origin.

Friday, September 23, 2022

A potential new treatment for brain tumors

Featured photo at top of Pankaj Desai, left, and senior graduate research assistant Aniruddha Karve, right, in the lab.
Photo credit: Andrew Higley | University of Cincinnati

A research question posed in Pankaj Desai’s lab has led to a decade of research, a clinical trial and major national funding to further investigate a potential new treatment for the deadliest form of brain tumors.

Desai, PhD, and his team at the University of Cincinnati recently received a $1.19 million grant from the National Institutes of Health/National Institute of Neurological Disorders and Stroke to continue research into the use of a drug called letrozole to treat glioblastomas (GBM).

Research progression

GBMs are aggressive brain tumors that patients often are unaware of until symptoms emerge and the tumor is substantial. Current treatments include immediate surgery to safely remove as much tumor as possible, radiation and chemotherapy, but the tumor often recurs or becomes resistant to treatments. The average patient survives no more than 15 months after diagnosis.

The medication letrozole was approved by the U.S. Food and Drug Administration as a treatment for postmenopausal women with breast cancer in 2001. The drug works by targeting an enzyme called aromatase that is present in breast cancer cells and helps the cancer grow.

New research reveals the relationship between particular brain circuits and different aspects of mental wellbeing

Brain circuits and wellbeing
Credit: Miriam Klein-Flugge 

Associate Professor Miriam Klein-Flügge and colleagues looked at brain connectivity and mental health data from nearly 500 people. In particular, they looked at the connectivity of the amygdala – a brain region well known for its importance in emotion and reward processing. The researchers used functional magnetic resonance imaging to consider seven small subdivisions of the amygdala and their associated networks rather than combining the whole region together as previous studies have done.

The team also adopted a more precise approach to the data on mental wellbeing, looking at a large group of healthy people and using questionnaires that captured information about wellbeing in the social, emotional, sleep, and anger domains. This generated more precise data than many investigations which still use broad diagnoses such as depression or anxiety, which involve many different symptoms.

The paper, published in Nature Human Behavior, shows how the improved level of detail about both brain connectivity and wellbeing made it possible to characterize the exact brain networks that relate to these distinct aspects of mental health. The brain connections that mattered most for discerning whether an individual was struggling with sleep problems, for example, looked very different from those that carried information about their social wellbeing.

Wednesday, September 21, 2022

A new understanding of the neurobiology of impulsivity News

Photo Credit: Vitolda Klein

While not all impulsive behavior speaks of mental illness, a wide range of mental health disorders which often emerge in adolescence, including depression and substance abuse, have been linked to impulsivity. So, finding a way to identify and treat those who may be particularly vulnerable to impulsivity early in life is especially important.

A group of researchers, led by scholars at McGill University, have developed a genetically based score which could help identify, with a high degree of accuracy (greater than that of any impulsivity scores currently in use), the young children who are most at risk of impulsive behavior.

Their findings are especially compelling because the score they have developed was able to detect those at a higher risk of impulsivity within three ethnically diverse community samples of children, from a cohort of close to 6,000 children.

This discovery of a novel score for impulsivity in early life can inform prevention strategies and programs for children and adolescents who are at risk for psychiatric disorders. In addition, by describing the function of the gene networks comprising the score, the study can stimulate the development of new therapies in the future.

Monday, September 19, 2022

Statin use is not justified for healthy people with high cholesterol

Professor David Diamond, Department of Psychology
Credit: University of South Florida
About 40 million adults in the United States regularly take statins to lower their cholesterol levels and reduce their risk of heart disease and stroke, according to American Heart Association data from 2020.

However, many of them don’t stand to benefit from these drugs based on new research from David Diamond, a neuroscientist and cardiovascular disease researcher in the Department of Psychology at the University of South Florida.

Diamond and his co-authors reviewed literature from medical trials involving patients taking either a statin or placebo. They then narrowed their review to look at study participants with elevated levels of low-density lipoprotein-cholesterol (LDL), the so-called “bad cholesterol,” which can be reduced with a statin. Some individuals with high LDL also had high triglycerides (fat in the blood) and low high-density lipoprotein (HDL), the “good cholesterol,” which put them at the highest risk of having a heart attack.

But others with high LDL were very different. They had low triglycerides and high HDL, which meant they were healthier. People with optimal triglycerides and HDL levels typically exercise, have low blood pressure and low blood sugar, and are at a low risk of a heart attack.

Diamond and his co-authors asked two questions: If people are at a low risk of a heart attack based on having optimal triglycerides and HDL, but they also have high LDL, does that raise their risk? Further, would these people benefit from lowering their LDL with a statin?

Saturday, September 17, 2022

Even the smartest AI models don’t match human visual processing

The study employed novel visual stimuli called “Frankensteins
Source/Credit: York University

Deep convolutional neural networks (DCNNs) don’t see objects the way humans do – using configural shape perception – and that could be dangerous in real-world AI applications, says Professor James Elder, co-author of a York University study.

Published in the Cell Press journal iScience, Deep learning models fail to capture the configural nature of human shape perception is a collaborative study by Elder, who holds the York Research Chair in Human and Computer Vision and is Co-Director of York’s Centre for AI & Society, and Assistant Psychology Professor Nicholas Baker at Loyola College in Chicago, a former VISTA postdoctoral fellow at York.

The study employed novel visual stimuli called “Frankensteins” to explore how the human brain and DCNNs process holistic, configural object properties.

“Frankensteins are simply objects that have been taken apart and put back together the wrong way around,” says Elder. “As a result, they have all the right local features, but in the wrong places.”

The investigators found that while the human visual system is confused by Frankensteins, DCNNs are not – revealing an insensitivity to configural object properties.

Exercise may be key to developing treatments for rare movement disorders

Spinal cerebellar ataxia 6 (SCA6) is an inherited neurological condition which has a debilitating impact on motor coordination. Affecting around 1 in 100,000 people, the rarity of SCA6 has seen it attract only limited attention from medical researchers. To date, there is no known cure and only limited treatment options exist.

Now, a team of McGill University researchers specializing in SCA6 and other forms of ataxia, have published findings that not only offer hope for SCA6 sufferers but may also open the way to developing treatments for other movement disorders.

Exercise in a pill

In mice affected by SCA6, the McGill team, led by biology professor Alanna Watt, found that exercise restored the health of cells in the cerebellum, the part of the brain implicated in SCA6 and other ataxias. The reason for the improvement, the researchers found, was that exercise increased levels of brain-derived neurotrophic factor (BDNF), a naturally occurring substance in the brain which supports the growth and development of nerve cells. Importantly for patients with a movement disorder, for whom exercise may not always be feasible, the team demonstrated that a drug that mimicked the action of BDNF could work just as well as exercise, if not better.

Friday, September 16, 2022

Brain Injury Model Created to Find New Medication

The experiments on the fish were conducted non-invasively, using a laser machine.
Photo credit: Danil Lomovskikh

Scientists from Russia and Taiwan (China) have developed and successfully tested a new model of traumatic brain injury (TBI) in zebradanio fish (Danio rerio). The method is based on irradiating the brains of adult individuals of these popular aquarium and laboratory fish with a unique laser system with precise aiming, which was specially developed by scientists. The application of this model allowed the researchers to simulate the TBI and identify molecular targets promising for the treatment of neurotrauma and its consequences. This paves the way for preclinical zebrafish testing of new neuroprotective medications.

The work was financially supported by the Russian Science Foundation (grant № 20-65-46006). An article describing the research was published in the highly rated scientific journal Pharmaceutics. The subject of the research was explained by Alan Kaluev, professor of the Russian Academy of Sciences, member of the European Academy, leading researcher of the Research Institute of Neuroscience and Medicine, professor of the St. Petersburg State University and Sirius Scientific-Technological University, leading researchers of the Ural Federal University and the Moscow Institute of Physics and Technology. Professor Kaluev is a leading scientist within the framework of research conducted at the Scientific Novosibirsk Research Institute of Neuroscience and Medicine (laboratory of Tamara Amstislavskaya and Maria Tikhonova).

The most common experimental models of brain injury in both rodents and zebrafish, such as mechanical blows to the head or needle piercing of the brain, involve penetrating brain tissue damage. However, these models do not correctly reproduce TBI. In the created model, due to the fact that the skin and skull of the used zebradanio species are transparent, it was possible to hit directly the brain, and non-invasively.

Thursday, September 15, 2022

Study links length of REM sleep to body temperature

Credit: Lancet Neurology

Warm-blooded animal groups with higher body temperatures have lower amounts of rapid eye movement (REM) sleep, while those with lower body temperatures have more REM sleep, according to new research from UCLA professor Jerome Siegel, who said his study suggests that REM sleep acts like a “thermostatically controlled brain heater.”

The study in Lancet Neurology suggests a previously unobserved relationship between body temperature and REM sleep, a period of sleep when the brain is highly active, said Siegel, who directs the Center for Sleep Research at the Jane and Terry Semel Institute for Neuroscience and Human Behavior at UCLA.

Birds have the highest body temperature of any warm-blooded, or homeotherm, animal group at 41 degrees while getting the least REM sleep at 0.7 hours per day. That’s followed by humans and other placental mammals (37 degrees, 2 hours of REM sleep), marsupials (35 degrees, 4.4 hours of REM sleep), and monotremes (31 degrees, 7.5 hours of REM sleep).

Tuesday, September 13, 2022

How the brain focuses on what’s in mind

Remembering directions someone just gave you is an example of working memory. In a new study, MIT researchers show that the brain's focus on the contents of what its holding in mind derives from bursts of gamma frequency rhythms in the front of the brain.
Photo credit: George Pak

Working memory, that handy ability to consciously hold and manipulate new information in mind, takes work. In particular, participating neurons in the prefrontal cortex have to work together in synchrony to focus our thoughts, whether we’re remembering a set of directions or tonight’s menu specials. A new study by researchers based at The Picower Institute for Learning and Memory at MIT shows how that focus emerges.

The key measure in the study in Scientific Reports is the variability of the neurons’ activity. Scientists widely agree that less variability activity means more-focused attunement to the task. Measures of that variability have indeed shown that it decreases when humans and animals focus during working memory games in the lab.

In several studies between 2016 and 2018, lead author Mikael Lundqvist and co-senior author Earl K. Miller showed through direct measurements of hundreds of neurons and rigorous modeling that bursts of gamma frequency rhythms in the prefrontal cortex coordinate neural representation of the information held in mind. The information representation can be measured in the synchronized spiking of populations of individual neurons. Bursts of beta frequency rhythms, meanwhile, implement the brain’s manipulation of that information. The theory, which Miller dubbed “Working Memory 2.0” challenged a long-held orthodoxy that neurons maintain working memory information through steady, persistent activity. Proponents of that older model, which emerged from averaged measurements made in relatively few neurons, used computer-based modeling of brain activity to argue that reduced variability cannot emerge from intermittent bursts of rhythmic activity.

The gene to which we owe our big brain

A section of a brain organoid made from stem cells of a human. In magenta are actively proliferating brain stem cells, in yellow a subset of brain stem cells.
Photo Credit: Jan Fischer

ARHGAP11B - this complex name is given to a gene that is unique to humans and plays an essential role in the development of the neocortex. The neocortex is the part of the brain to which we owe our high mental abilities. A team of researchers from the German Primate Center (DPZ) - Leibniz Institute for Primate Research in Göttingen, the Max Planck Institute for Molecular Cell Biology and Genetics (MPI-CBG) in Dresden, and the Hector Institute for Translational Brain Research (HITBR) in Mannheim has investigated the importance of ARHGAP11B in neocortex development during human evolution. 

To do this, the team introduced for the first time a gene that exists only in humans into laboratory-grown brain organoids from our closest living relatives, chimpanzees. In the chimpanzee brain organoid, the ARHGAP11B gene led to an increase in brain stem cells relevant to brain growth and an increase in those neurons that play a critical role in the extraordinary mental abilities of humans. If, on the other hand, the ARHGAP11B gene was switched off in human brain organoids, the quantity of these brain stem cells fell to the level of a chimpanzee. Thus, the research team was able to show that the ARGHAP11B gene played a crucial role in the evolution of the brain from our ancestors to modern humans.

Thursday, September 8, 2022

New study finds subtle structural brain alterations in youth with suicidal behaviors

ENGIMA-STB aims to identify neurobiological variations associated with suicidal ideations and behaviors, to ultimately leverage information from brain structure, function, along with clinical and demographic factors, to predict the likelihood of a future suicidal attempt.
Image credit: USC Stevens INI

The ENIGMA Suicidal Thoughts and Behaviors (ENIGMA-STB) consortium gathered and analyzed neuroimaging data from 18 different studies worldwide to examine associations between brain structure and suicide attempt in young people with major depressive disorder.

Suicide is the second leading cause of death in the United States for young people from the age of 10 up to 33. Tragically, the number of suicide attempts among children and adolescents has continued to increase despite national and international prevention efforts. Collaborative research where specialists all over the world work together is needed to advance our understanding of the complex nature of suicidal thoughts and behaviors, and ultimately, to develop better interventions and preventions.

A new study by a global team of researchers including Neda Jahanshad, PhD, of the Keck School of Medicine of USC’s Mark and Mary Stevens Neuroimaging and Informatics Institute (Stevens INI), has revealed subtle alterations in the size of the brain’s prefrontal region in young people with mood disorders and suicidal thoughts and behaviors. The study was recently published in Molecular Psychiatry.

New knowledge about the link between infection during pregnancy and autism

Credit: Mart Production

Infections in pregnant women have been linked to increased risk of neuropsychiatric conditions, such as autism, in the child later in life. But it does not appear to be the infections themselves that cause autism, researchers from Karolinska Institutet show in a study published in The Lancet Psychiatry.

Our results can reassure future parents by showing that infections during pregnancy may not pose as much risk to the child's brain as previously thought, say Håkan Karlsson, researchers at Department of Neuroscience at Karolinska Institutet and the study's last author.

Previous studies have shown a link between infections of the future mother during pregnancy and increased risk of autism and intellectual disability in the child later in life.

But they have not been able to say whether it is really the infection of the mother that is the cause, or whether other factors are behind it. Researchers from Karolinska Institutet have now studied this more closely.

Wednesday, September 7, 2022

How Fat Signals Us to Eat More of It

Charles S. Zuker
Columbia University Neuroscience Physiology
Source: HHMI
Scientists discover how fat triggers a gut-to-brain mechanism that drives us to keep consuming more of it. Their findings could one day lead to interventions to help treat obesity and associated disorders.

Short ribs glazed in a sweet sticky sauce and slow-cooked to perfection, potato chips hand-fried and tossed with a generous coating of sour cream, chicken wings battered and double-fried so that they stay crispy for hours. What is it about these, and other, mouth-watering — but incredibly fatty — foods that makes us reach out, and keep coming back for more?

How they taste on the tongue is one part of the story, but to really understand what drives “our insatiable appetite for fat,” we have to examine what happens after fat is consumed, says Columbia University’s Charles Zuker, a neuroscientist and molecular geneticist who has been a Howard Hughes Medical Institute (HHMI) Investigator since 1989.

Two years ago, Zuker and his team reported how sugar, upon reaching the gut, triggers signals that are sent to the brain, thus fueling cravings for sweet treats. Now, in an article published in Nature on September 7, 2022, they describe a similar gut-to-brain circuit that underlies a preference for fat.

“The gut is the source of our great desire for fat and sugar,” says Zuker.

The topic in question is an incredibly timely one, given the current global obesity epidemic. An estimated 13 percent of adults worldwide are obese — thrice that in 1975. In the US, that figure is even higher — at a staggering 42 percent. “It’s a very significant and important health problem,” says Zuker.

Having a high body-mass index is a risk factor for stroke, diabetes, and several other diseases. “It’s clear that if we want to help make a difference here, we need to understand the biological basis for our strong appetite for fat and sugar,” he says. Doing so will help us design interventions in the future to “suppress this strong drive to consume” and combat obesity.

Tuesday, September 6, 2022

How does nature nurture the brain?

Credit: Jessica Rockowitz on Unsplash

After a 60-minute walk in nature, activity in brain regions involved in stress processing decreases. This is the finding of a recent study by the Lise Meitner Group for Environmental Neuroscience at the Max Planck Institute for Human Development, published in Molecular Psychiatry.

Living in a city is a well-known risk factor for developing a mental disorder, while living close to nature is largely beneficial for mental health and the brain. A central brain region involved in stress processing, the amygdala, has been shown to be less activated during stress in people who live in rural areas, compared to those who live in cities, hinting at the potential benefits of nature. “But so far the hen-and-egg problem could not be disentangled, namely whether nature actually caused the effects in the brain or whether the particular individuals chose to live in rural or urban regions”, says Sonja Sudimac, predoctoral fellow in the Lise Meitner Group for Environmental Neuroscience and lead author of the study.

To achieve causal evidence, the researchers from the Lise Meitner Group for Environmental Neuroscience examined brain activity in regions involved in stress processing in 63 healthy volunteers before and after a one-hour walk in Grunewald forest or a shopping street with traffic in Berlin using functional magnetic resonance imaging (fMRI). The results of the study revealed that activity in the amygdala decreased after the walk in nature, suggesting that nature elicits beneficial effects on brain regions related to stress.

Thursday, September 1, 2022

Cannabis users no less likely to be motivated or able to enjoy life’s pleasure

Credit: RODNAE Productions

Cannabis users also show no difference in motivation for rewards, pleasure taken from rewards, or the brain’s response when seeking rewards, compared to non-users.

Cannabis is the third most commonly used controlled substance worldwide, after alcohol and nicotine. A 2018 report from the NHS Digital Lifestyles Team stated that almost one in five (19%) of 15-year-olds in England had used cannabis in the previous 12 months, while in 2020 the National Institute on Drug Abuse reported the proportion in the United States to be 28% of 15-16-year-olds.

A common stereotype of cannabis users is the ‘stoner’ – think Jesse Pinkman in Breaking Bad, The Dude in The Big Lebowski, or, more recently, Argyle in Stranger Things. These are individuals who are generally depicted as lazy and apathetic.

At the same time, there has been considerable concern of the potential impact of cannabis use on the developing brain and that using cannabis during adolescence might have a damaging effect at an important time in an individual’s life.

A team led by scientists at UCL, the University of Cambridge and the Institute of Psychiatry, Psychology & Neuroscience at King’s College London carried out a study examining whether cannabis users show higher levels of apathy (loss of motivation) and anhedonia (loss of interest in or pleasure from rewards) when compared to controls and whether they were less willing to exert physical effort to receive a reward. The research was part of the CannTEEN study.

Wednesday, August 31, 2022

Study finds tiny brain area controls work for rewards

The lateral habenula in the mouse brain, with axons streaming down to dopaminergic and serotonergic centers. Credit: Warden Lab

A tiny but important area in the middle of the brain acts as a switch that determines when an animal is willing to work for a reward and when it stops working, according to a study published Aug. 31 in the journal Current Biology.

“The study changes how we think about this particular brain region,” said senior author Melissa Warden, assistant professor and Miriam M. Salpeter Fellow in the Department of Neurobiology and Behavior, which is shared between the College of Arts and Sciences and the College of Agriculture and Life Sciences.

“It has implications for psychiatric disorders, particularly depression and anxiety,” Warden said.

The paper, “Tonic Activity in Lateral Habenula Neurons Acts as a Neutral Valence Brake on Reward-Seeking Behavior,” illuminates the role of the lateral habenula, a small structure on top of the thalamus, which funnels higher-level information from the front and center of the brain to areas that produce neurotransmitters such as serotonin and dopamine.

The lateral habenula’s exact role has been unclear until now. The new study shows that when neurons in this brain area turn off, an animal will work for rewards; when those neurons fire, the animal becomes disengaged and stops working. Experiments revealed that the lateral habenula turns on specifically when an animal has had enough of a reward and is satisfied, or when it finds its work no longer yields a reward.

Brain activity during sleep differs in young people with genetic risk of psychiatric disorders

Photo by Lux Graves on Unsplash

Young people living with a genetic alteration that increases the risk of psychiatric disorders have markedly different brain activity during sleep, a study led by researchers from the Universities of Bristol and Cardiff published in the journal eLife shows.

The brain activity patterns during sleep shed light on the neurobiology behind a genetic condition called 22q11.2 Deletion Syndrome (22q11.2DS) and could be used as a biomarker to detect the onset of neuropsychiatric disorders in people with 22q11.2DS.

Caused by a gene deletion of around 30 genes on chromosome 22, 22q11.2DS occurs in one in 3000 births. It increases the risk of intellectual disability, autism spectrum disorder (ASD), attention-deficit hyperactivity disorder (ADHD) and epileptic seizures. It is also one of the largest biological risk factors for schizophrenia. However, the biological mechanisms underlying psychiatric symptoms in 22q11.2DS are unclear.

Marianne van den Bree, co-senior author and Professor of Psychological Medicine at Cardiff said: “We have recently shown that the majority of young people with 22q11.2DS have sleep problems, particularly insomnia and sleep fragmentation, that are linked with psychiatric disorders. However, our previous analysis was based on parents reporting on sleep quality of their children, and the neurophysiology – what’s happening to brain activity – has not yet been explored.”

Featured Article

Robot sleeves for kids with cerebral palsy

Experimental setup for earlier iteration of the proposed robot sleeves. Credit: Jonathan Realmuto/UCR UC Riverside engineers are developing ...

Top Viewed Articles