. Scientific Frontline

Sunday, April 30, 2023

Urologists to perform world’s first bladder transplant

The Keck Medicine of USC surgical team evaluates the integrity of a bladder during the research and development stage of bladder transplantation.
Photo Credit: Courtesy of USC Urology

No one has ever performed a bladder transplant in humans. But that may be about to change.

Urologists with Keck Medicine of USC have launched a clinical trial to perform the world’s first human bladder transplant.

The trial is actively screening potential participants for this first-ever type of transplantation.

During the procedure, the patient’s diseased bladder will be removed and replaced with a healthy bladder from a deceased donor.

“Transplantation is a lifesaving treatment option for conditions affecting many major organs, and transplanting a bladder could be a historic step in improving lives,” said Inderbir Gill, MD, founding executive director for USC Urology, part of Keck Medicine. Gill is also the principal investigator of the clinical trial and leading the transplantation efforts. “We could be on the verge of a medical advance that has the potential to revolutionize how we treat terminally compromised bladders.”

Targeting mitochondria and related protein suggest new therapeutic strategy for treating Lou Gehrig's disease (ALS)

Researchers have discovered a receptor, sigma-1 receptor (green), and a protein, ATAD3A (red),  that are associated with Amyotrophic Lateral Sclerosis (ALS), also known as Lou Gehrig’s disease.
Image Credit: Yamanaka Laboratory

Researchers at Nagoya University in Japan have discovered a receptor, sigma-1 receptor, and a protein, ATAD3A, that are associated with Amyotrophic Lateral Sclerosis (ALS), also known as Lou Gehrig’s disease. Since there are drugs that specifically target the receptor, their findings suggest a new therapeutic strategy. They published the study in the journal Neurobiology of Disease

ALS causes degeneration of motor neurons and the resulting muscle atrophy. Some of this degeneration is the result of the dysfunction of mitochondria, the energy-generating organelles of the body. This dysfunction causes a lack of energy in neurons resulting in the characteristic symptoms of the disease.   

The integrity of the mitochondria-associated membrane (MAM) is important for the stability of the mitochondria. The MAM is especially important during the processes of division of mitochondria (called fission) and mitochondria fusing together (called fusion). Several proteins, including enzymes, are associated with these processes and accumulate in the MAM.  

Scientists Identify Antivirals that Could Combat Emerging Infectious Diseases

Aedes aegypti mosquito.
Photo Credit: Pixabay

A new study has identified potential broad-spectrum antiviral agents that can target multiple families of RNA viruses that continue to pose a significant threat for future pandemics. The study, led by Gustavo Garcia Jr. in the UCLA Department of Molecular and Medical Pharmacology, tested a library of innate immune agonists that work by targeting pathogen recognition receptors, and found several agents that showed promise, including one that exhibited potent antiviral activity against members of RNA viral families.

The ongoing SARS-CoV-2 pandemic, which has claimed nearly seven million lives globally since it began, has revealed the vulnerabilities of human society to a large-scale outbreak from emerging pathogens. While accurately predicting what will trigger the next pandemic, the authors say recent epidemics as well as global climate change and the continuously evolving nature of the RNA genome indicate that arboviruses, viruses spread by arthropods such as mosquitoes, are prime candidates. These include such as Chikungunya virus (CHIKV), Dengue virus, West Nile virus and Zika virus. The researchers write: “Given their already-demonstrated epidemic potential, finding effective broad-spectrum treatments against these viruses is of the utmost importance as they become potential agents for pandemics.”

In their new study, published in Cell Reports Medicine, researchers found that several antivirals inhibited these arboviruses to varying degrees. “The most potent and broad-spectrum antiviral agents identified in the study were cyclic dinucleotide (CDN) STING agonists, which also hold promise in triggering an immune defense against cancer,” said senior author Vaithi Arumugaswami, Associate Professor in the UCLA Department of Molecular and Medical Pharmacology and a member of the California NanoSystems Institute.

Study unlocks potential breakthrough in Type 1 diabetes treatment

Omid Veiseh and Boram Kim. Kim is holding a medical-grade catheter similar to ones used in the study experiments.
Photo Credit: Gustavo Raskosky/Rice University

For the over 8 million people around the globe living with Type 1 diabetes, getting a host immune system to tolerate the presence of implanted insulin-secreting cells could be life-changing.

Rice University bioengineer Omid Veiseh and collaborators identified new biomaterial formulations that could help turn the page on Type 1 diabetes treatment, opening the door to a more sustainable, long-term, self-regulating way to handle the disease.

To do so, they developed a new screening technique that involves tagging each biomaterial formulation in a library of hundreds with a unique “barcode” before implanting them in live subjects.

According to the study in Nature Biomedical Engineering, using one of the alginate formulations to encapsulate human insulin-secreting islet cells provided long-term blood sugar level control in diabetic mice. Catheters coated with two other high-performing materials did not clog up.

“This work was motivated by a major unmet need,” said Veiseh, a Rice assistant professor of bioengineering and Cancer Prevention and Research Institute of Texas scholar. “In Type 1 diabetes patients, the body’s immune system attacks the insulin-producing cells of the pancreas. As those cells are killed off, the patient loses the ability to regulate their blood glucose.”

The world’s first wood transistor

Isak Engquist, senior associate professor and Van Chinh Tran, PhD student at the Laboratory for Organic Electronics at Linköping University.
Photo Credit: Thor Balkhed

Researchers at Linköping University and the KTH Royal Institute of Technology have developed the world’s first transistor made of wood. Their study, published in the journal PNAS, paves the way for further development of wood-based electronics and control of electronic plants.

Transistors, invented almost one hundred years ago, are considered by some to be an invention just as important to humanity as the telephone, the light bulb or the bicycle. Today, they are a crucial component in modern electronic devices, and are manufactured at nanoscale. A transistor regulates the current that passes through it and can also function as a power switch.

Researchers at Linköping University, together with colleagues from the KTH Royal Institute of Technology, have now developed the world’s first electrical transistor made of wood.

“We’ve come up with an unprecedented principle. Yes, the wood transistor is slow and bulky, but it does work, and has huge development potential,” says Isak Engquist, senior associate professor at the Laboratory for Organic Electronics at Linköping University.

Thursday, April 27, 2023

Perovskite solar cells' instability must be addressed for global adoption

Photo Credit: Chelsea

Mass adoption of perovskite solar cells will never be commercially viable unless the technology overcomes several key challenges, according to researchers from the University of Surrey. 

Perovskite-based cells are widely believed to be the next evolution of solar energy and meet the growing demand for clean energy. However, they are not as stable as traditional solar-based cells.  

The Surrey team found that stabilizing the perovskite "photoactive phases" – the specific part of the material that is responsible for converting light energy into electrical energy – is the key step to extending the lifespan of perovskite solar cells.  

The stability of the photoactive phase is important because if it degrades or breaks down over time, the solar cell will not be able to generate electricity efficiently. Therefore, stabilizing the photoactive phase is a critical step in improving the longevity and effectiveness of perovskite solar cells. 

‘Spectacular’ new find: Roman military camps in desert found by Oxford archaeologists using Google Earth

An aerial view of the western camp
Photo Credit: APAAME

Three new Roman fortified camps have been identified across northern Arabia by a remote sensing survey by the University of Oxford’s School of Archaeology.  Their paper, published today in the journal Antiquity, reports the discovery may be evidence of a probable undocumented military campaign across south east Jordan into Saudi Arabia.

The camps were identified using satellite images. According to the research team, they may have been part of a previously undiscovered Roman military campaign linked to the Roman takeover of the Nabataean Kingdom in AD 106 CE, a civilization centered on the world-famous city of Petra, located in Jordan.

"These camps are a spectacular new find and an important new insight into Roman campaigning in Arabia."
Dr Mike Bishop

Dr Michael Fradley, who led the research and first identified the camps on Google Earth, suggests there is little doubt about the date of the camps. He says, ‘We are almost certain they were built by the Roman army, given the typical playing card shape of the enclosures with opposing entrances along each side. The only notable difference between them is that the westernmost camp is significantly larger than the two camps to the east.’

Researchers get the drop on new frog species

The Litoria naispela juvenile mimics bird droppings.
Photo Credit: Steve Richards

Five new species of frogs, including one with camouflage that makes it look like bird droppings, have been described by Australian scientists.

Scientists from Griffith University, Queensland Museum and South Australian Museum recently described the five species of treefrogs from Papua New Guinea.

Griffith University scientist Dr Paul Oliver, a joint appointee with Queensland Museum, said the new species highlighted the remarkable and poorly understood diversity of New Guinea frogs.

“These small tree frogs lay their eggs out of the water, typically on leaves, quite different to your typical treefrog, which lay their eggs directly into water,” Dr Oliver said.

Discovering Hidden Order in Disordered Crystals New Material Analysis Method Combining Resonant X-Ray Diffraction and Solid-State NMR


Researchers at Tokyo Tech have discovered hidden chemical order of the Mo and Nb atoms in disordered Ba7Nb4MoO20, by combining state-of-the-art techniques, including resonant X-ray diffraction and solid-state nuclear magnetic resonance. This study provides valuable insights into how a material's properties, such as ionic conduction, can be heavily influenced by its hidden chemical order. These results would stimulate significant advances in materials science and engineering.

Determining the precise structure of a crystalline solid is a challenging endeavor. Materials properties such as ion conduction and chemical stability, are heavily influenced by the chemical (occupational) order and disorder. However, the techniques that scientists typically use to elucidate unknown crystal structures suffer from serious limitations.

For instance, X-ray and neutron diffraction methods are powerful techniques to reveal the atomic positions and arrangement in the crystal lattice. However, they may not be adequate for distinguishing different atomic species with similar X-ray scattering factors and similar neutron scattering lengths.

Twilight zone at risk from climate change

Photo Credit: PublicDomainPictures

Life in the ocean’s “twilight zone” could decline dramatically due to climate change, new research suggests.

The twilight zone (200m to 1,000m deep) gets very little light but is home to a wide variety of organisms and billions of tons of organic matter.

The new study warns that climate change could cause a 20-40% reduction in twilight zone life by the end of the century.

And in a high-emissions future, life in the twilight zone could be severely depleted within 150 years, with no recovery for thousands of years.

“We still know relatively little about the ocean twilight zone, but using evidence from the past we can understand what may happen in the future,” said Dr Katherine Crichton, from the University of Exeter, and lead author of the study.

The research team, made up of paleontologists and ocean modelers, looked at how abundant life was in the twilight zone in past warm climates, using records from preserved microscopic shells in ocean sediments.

Featured Article

Autism and ADHD are linked to disturbed gut flora very early in life

The researchers have found links between the gut flora in babies first year of life and future diagnoses. Photo Credit:  Cheryl Holt Disturb...

Top Viewed Articles