. Scientific Frontline

Friday, February 23, 2024

New moons of Uranus and Neptune announced

The discovery image of the new Uranian moon S/2023 U1 using the Magellan telescope on November 4, 2023.  Uranus is just off the field of view in the upper left, as seen by the increased scattered light.  S/2023 U1 is the faint point of light in the center of the image. (There is an arrow pointing to it in the lower version of the image). The trails are from background stars. 
Image Credit: Scott Sheppard.

The Solar System has some new lunar members—the first new moon of Uranus discovered in more than 20 years, and likely the smallest, as well as two new moons of Neptune, one of which is the faintest moon ever discovered by ground-based telescopes. The discoveries were announced today by the International Astronomical Union's Minor Planet Center.

“The three newly discovered moons are the faintest ever found around these two ice giant planets using ground-based telescopes,” explained Carnegie Science’s Scott S. Sheppard. “It took special image processing to reveal such faint objects.”

The new Uranian member brings the ice giant planet’s total moon count to 28. At only 8 kilometers, it is probably the smallest of Uranus’ moons. It takes 680 days to orbit the planet. Provisionally named S/2023 U1, the new moon will eventually be named after a character from a Shakespeare play, in keeping with the naming conventions for outer Uranian satellites.

An increase in blood-sucking black flies is expected in Germany

Simulium ornatum is a black fly species of veterinary and human medical relevance.
Photo Credit: Dorian Dörge

Researchers from Goethe University Frankfurt and the Senckenberg Biodiversity and Climate Research Centre have modeled the spatial distributional patterns of black flies in Hesse, North Rhine-Westphalia, Rhineland-Palatinate and Saxony for the first time. In the study published in the renowned journal Science of the Total Environment, the research team shows that black flies in Germany can be categorized into three groups with different distribution patterns and ecological requirements. The researchers point out that medically relevant species in particular could become more prevalent as a result of ongoing climate and land-use change. 

Only six millimeters in length, black flies (Simuliidae) may look harmless like house flies, but their bites can be very unpleasant. Similar to mosquitoes, the females of these insects that are able to fly need a blood meal to produce eggs. Known as “pool feeders", they use their sharp “teeth" to scratch the skin of the host and then ingest the resulting drop of blood. “The anticoagulant and anesthetic substances introduced into the wound by mosquitoes can trigger serious allergic reactions or lead to secondary bacterial infections," states Prof. Dr. Sven Klimpel from the Senckenberg Biodiversity and Climate Research Centre, Goethe University Frankfurt, the LOEWE Centre for Translational Biodiversity Genomics (TBG), and the Fraunhofer IME Giessen. Klimpel continues: "Black flies are also vector-competent, meaning they are able to transmit pathogens that cause infectious diseases through their bites." One of the most well-known diseases transmitted by black flies is onchocerciasis, also known as “river blindness", caused by the nematode Onchocerca volvulus, which is native to Africa. According to the World Health Organization, more than 1.15 million people worldwide have already lost their sight as a result of the disease. 

Research reveals new insights into marine plastic pollution

Photo Credit: Lucien Wanda

A groundbreaking study led by researchers at the University of Stirling has uncovered the crucial role of bacteria living on plastic debris.

The research also identifies rare and understudied bacteria that could assist in plastic biodegradation, offering new insights for tackling plastic pollution.

Plastic pollution is a worldwide problem, with up to two million tons estimated to enter oceans every year, damaging wildlife and ecosystems.

In a pioneering study, experts at the University of Stirling’s Faculty of Natural Sciences and the University of Mons (Belgium) analyzed the proteins in plastic samples taken from Gullane Beach in Scotland.

Unlike previous studies carried out in warmer climates that focus on the genetic potential of biofilms inhabiting plastics, this research led by Dr Sabine Matallana-Surget took a unique approach by analyzing the proteins expressed by active microorganisms.

Their findings have unveiled a remarkable discovery of enzymes actively engaged in degrading plastic. Moreover, the team has pioneered new methodologies for enhanced predictions in marine microbiology research.

Super Strong Magnetic Fields Leave Imprint on Nuclear Matter

Collisions of heavy ions generate an immensely strong electromagnetic field. Scientists investigate traces of this powerful electromagnetic field in the quark-gluon plasma (QGP), a state where quarks and gluons are liberated from the colliding protons and neutrons.
Illustration Credit: Tiffany Bowman and Jen Abramowitz/Brookhaven National Laboratory

A new analysis by the STAR collaboration at the Relativistic Heavy Ion Collider (RHIC), a particle collider at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory, provides the first direct evidence of the imprint left by what may be the universe’s most powerful magnetic fields on “deconfined” nuclear matter. The evidence comes from measuring the way differently charged particles separate when emerging from collisions of atomic nuclei at this DOE Office of Science user facility.

As described in the journal Physical Review X, the data indicate that powerful magnetic fields generated in off-center collisions induce an electric current in the quarks and gluons set free, or deconfined, from protons and neutrons by the particle smashups. The findings give scientists a new way to study the electrical conductivity of this “quark-gluon plasma” (QGP) to learn more about these fundamental building blocks of atomic nuclei.

“This is the first measurement of how the magnetic field interacts with the quark-gluon plasma (QGP),” said Diyu Shen, a STAR physicist from Fudan University in China and a leader of the new analysis. In fact, measuring the impact of that interaction provides direct evidence that these powerful magnetic fields exist.

Killer instinct drove evolution of mammals’ predatory ancestors

Inostrancevia, a more advanced predatory synapsid and one of the first sabertoothed carnivores, from the late Permian (~259-252 Million years ago). (Display at the Royal Ontario Museum, Canada).
Photo Credit: Suresh A. Singh

The evolutionary success of the first large predators on land was driven by their need to improve as killers, researchers at the University of Bristol and the Open University suggest.

The forerunners of mammals ruled the Earth for about 60 million years, long before the origin of the first dinosaurs. They diversified as the top predators on land between 315–251 million years ago.

Researchers studied the jaw anatomy and body size of carnivorous synapsids, using these traits to reconstruct the likely feeding habits of these ancient predators and chart their ecological evolution through time. They found a major shift in synapsid jaw function roughly 270 million years ago linked to a significant shift in predatory behavior that has important implications for the evolution of our earliest ancestors. 

As herbivores grew larger and faster, carnivores adapted to become bigger and better predators to survive.

“Earlier synapsid predators such as the famous sail backed Dimetrodon, had fairly long jaws with lots of teeth to ensure that once they ensnared their prey, it wouldn’t escape,” explained lead author Dr Suresh Singh based in Bristol’s School of Earth Sciences. “However, we saw a shift in jaw function toward shorter jaws with greater muscle efficiency and fewer teeth that were concentrated at the front of the jaw - these were jaws adapted to deliver deep, powerful bites.

Study shows orchid family emerged in northern hemisphere and thrived alongside dinosaurs

Phallaenopsis orchid in bloom
Photo Credit: John Wiesenfeld

Scientists at the Royal Botanic Gardens in Kew and the University of Portsmouth, along with partners in Latin America, Asia and Australia, have presented an updated family tree of orchids, tracing their origins to the northern hemisphere some 85 million years ago.

The study, published in leading journal New Phytologist, sheds new light on their complex and fascinating evolutionary history, and the authors hope their findings will help inform future orchid conservation planning. 

The orchid family, Orchidaceae, is often lauded by scientists as one of the greatest evolutionary marvels within the plant world. Not only are these flowering plants found on every continent except the Antarctic and in virtually every habitat, including north of the Arctic Circle, but they are also incredibly diverse, with an estimated 29,500 species – nearly three times more than the recognized number of bird species globally.  

It is generally accepted that orchids originated as far back as around 90 million years or more ago, but they were previously thought to have emerged on the supercontinent Gondwana, in what is present-day Australia.

However, the new study indicates their common ancestor may have originated in the northern hemisphere, on the supercontinent Laurasia, before spreading out further into the world.  

3D model: This is how the body’s building blocks are made

Using electron microscopy, scientists have managed to produce a 3D model of a part of the human cell, the ribosome, which is no more than 30 nanometers in diameter.
Graphic Credit: Eva Kummer

Human cells contain ribosomes, a complex machine that produces proteins for the rest of the body. Now the researchers have come closer to understanding how the ribosome works.

“It is amazing that we can visualize the atomic details of the ribosome. Because they are tiny – around 20-30 nanometers.”

So says Associate Professor Eva Kummer from the Novo Nordisk Foundation Center for Protein Research, who is responsible for the new study published in Nature Communications.

And don’t worry if you don’t know how much a nanometer is. It is around one billionth of a meter.

Using electron microscopy, Eva Kummer and her colleagues Giang Nguyen and Christina Ritter have managed to produce a 3D model of a part of the human cell, the ribosome, which is no more than 30 nanometers in diameter.

More specifically, they have taken snapshots of how a ribosome is made.

“It is important to understand how the ribosome is built and how it works, because it is the only cell particle that produces proteins in humans and all other living organisms. And without proteins, life would cease to exist,” says Eva Kummer.

Proteins are the primary building blocks of the human body. Your heart, lungs, brain and basically your whole body is made of proteins produced by the ribosome.

“From the outside, the human body looks pretty simple, but then consider the fact that every part of the body consists of millions of molecules, that are extremely complex, and that they all know what to do – that is pretty breathtaking,” says Eva Kummer.

Side effects of wide scale forestation could reduce carbon removal benefits by up to a third

Combining forestation with other climate mitigation strategies is vital for more effective long-term climate action
Photo Credit: Andrew Coelho

The side effects of large-scale forestation initiatives could reduce the CO2 removal benefits by up to a third, a pioneering study has found.

The research, led by scientists at the University of Sheffield and published today (Thursday 22 February 2024) in the journal Science, provides a new insight into the broader impacts of forestation on the Earth's climate, indicating that its positive impact is potentially smaller than previously thought. 

Carbon removal strategies, such as forestation, alongside greenhouse gas emissions reduction efforts, have been recognized by the IPCC as essential measures to mitigate the risk of dangerous future climate change. 

By simulating global forest expansion with advanced computer modelling techniques, academics from the University of Sheffield, in collaboration with the Universities of Leeds and Cambridge, and NCAR and WWF, found that while forestation increases absorption of carbon dioxide from the atmosphere, other complex Earth System responses could together partially offset these benefits by up to a third.

Dr James Weber, from the University of Sheffield’s School of Biosciences and lead author of the study, said: “The public are bombarded with messages about climate change, and the suggestion that you can plant trees to offset your carbon emissions is widespread. Many businesses now offer to plant a tree with a purchase, and some countries plan to expand, conserve, and restore forests. 

Thursday, February 22, 2024

Outsmarting chemo-resistant ovarian cancer

Ovarian Tumor Microenvironment
Image Credit: National Cancer Institute

New approach with nanoparticle starves cells of cholesterol and reduces tumor growth by 50%

Treatment with the nanoparticle reduced ovarian tumor growth by more than 50% in human cells and animal models.

Women diagnosed with ovarian cancer may initially respond well to chemotherapy, but the majority of them will develop resistance to treatment and die from the disease.

Now Northwestern Medicine scientists have discovered the Achilles heel of chemotherapy-resistant ovarian cancer — its hunger for cholesterol — and how to sneakily use that to destroy it.

In a new study, scientists first showed that chemotherapy-resistant ovarian cancer cells and tumors are rich in cholesterol due to an increased uptake of it. They then deployed a synthetic nanoparticle that appeared to the cancer cells as a natural one rich in cholesterol. But when the cancer cells bound the fake particle, the mimic actually blocked cholesterol uptake. Additionally, the scientists showed that reducing cholesterol tricked the cancer cells down a cell death pathway. Treatment with the nanoparticle reduced ovarian tumor growth by more than 50% in human cells and animal models.

Anti-diabetic drugs could lower risk of primary and secondary brain cancer

Photo Credit: Tesa Robbins

Diabetic patients who take anti-diabetic drugs - known as glitazones – long term had a lower risk of primary and secondary brain cancer compared with diabetic patients on other medications, new research led by the University of Bristol has found.

The study, published in BMJ Open, suggests these drugs could be repurposed to prevent brain metastasis in cancer patients who are at high risk of secondary cancers, if the current research is supported by future studies.

PPAR- α agonists (fibrates) and PPAR γ agonists (glitazones) drugs are clinically important due to their widespread safe use to treat high cholesterol (hyperlipidemia) and diabetes.  Previous studies have suggested that fibrates and glitazones may have a role in brain tumor prevention. Given the drug's safety and cost, they have the potential to be repurposed to prevent brain cancers and reduce the risk of secondary tumors by stopping tumor growth.

Using primary care records from the UK GP database Clinical Practice Research Datalink (CPRD), which contains data from a network of over 2,000 GPs from more than 670 practices across the UK, the researchers examined if this theory could be supported.

Featured Article

Autism and ADHD are linked to disturbed gut flora very early in life

The researchers have found links between the gut flora in babies first year of life and future diagnoses. Photo Credit:  Cheryl Holt Disturb...

Top Viewed Articles