. Scientific Frontline

Thursday, February 17, 2022

Even in Southern California, wildfire frequency is likely to increase by end of century

A wildfire in Lake Elsinore, California, in 2018. Under one possible scenario, the study projects, the number of days with a high risk of fire would nearly double to about 58 days per year by 2100.
Credit: slworking2/Flickr

California’s massive fire seasons in the past two years are part of a trend that scientists have traced back for more than four decades. The area consumed each year by fires has increased significantly over that period — particularly in the Sierra Nevada and northern parts of the state. Although Southern California has had its share of wildfires in that span, too, the region hasn’t experienced the same increase.

But that disparity between north and south is not likely to continue. The number of days per year with increased risk for more and larger wildfires in Southern California is projected to increase significantly through the end of the century, according to new UCLA-led research.

The study, which is published in the Nature journal Communications Earth & Environment, analyzes data dating to 1975. Researchers found no substantial increase in the amount of area burned per year over the past 45 years.

Monday, February 14, 2022

Sustainable bioeconomy: development of environmentally friendly bio-shampoos and plant protection agent technologies

With the early assessment of sustainable, newly developed chemicals and products it is possible to assess a potential risk of toxic substances being released at a later point in product cascades. This has been revealed in a proof-of-concept study jointly coordinated by Goethe University Frankfurt and RWTH Aachen University. In the course of the study the toxicity of sustainable biosurfactants, potentially applied in, e.g., bio-shampoos, and of a new technology for the economical deployment of plant protection agents were analyzed using a combination of computer modelling and laboratory experiments. The study is the first step towards a safe bioeconomy from an eco-toxicological stance, and which uses sustainable resources and processes to reduce environmental burdens significantly.

The natural resources of the planet are running short, yet at the same time they are the basis for our prosperity and development. A dilemma which the EU intends to overcome with the aid of its revised bioeconomy strategy. Rather than relying on fossil-based materials, the economy is to be based on renewable materials. These include plants, wood, microorganisms and algae. At some point in time everything is to be found in closed loops, yet the implementation of a circular bioeconomy requires a shift in the manufacture of chemicals. These also have to be produced from bio-materials rather than crude oil. Based on these requirements the American chemists Paul Anastas and John C. Warner formulated their twelve principles of green chemistry in 1998. One of their principles has very much been neglected to date, however: the reduction of the environmental toxicity of newly developed substances.

Advanced computer simulations shed intriguing new light on magma deep below Earth’s surface

A molecular dynamics snapshot showing the atomic-scale structure of hydrous magma under high pressure and temperature conditions at 500 km depth in the transition zone region of the Earth’s mantle. The colored spheres denote hydrogen (white), oxygen (red), magnesium (blue), or silicon (yellow) atoms, with O-H, Mg-O, and Si-O, bonds represented by white sticks.
Credit: University of Bristol

Unlike the classic Jules Verne science fiction novel Journey to the Center of the Earth or movie The Core, humans cannot venture into the Earth’s interior beyond a few kilometers of its surface. But thanks to latest advances in computer modelling, an international team of researchers led by the University of Bristol has shed new light on the properties and behavior of magma found several hundreds of kilometers deep within the Earth.

The study showed water-rich (hydrous) magmas (extremely hot liquid rocks) formed in the Earth’s mantle – the layer beneath its crust – are more buoyant and fluid than previously believed. This discovery allows us to predict how and where hydrous magmas move within Earth’s interior, which means the amount of water in these realms can be more reliably predicted, furthering understanding of the deep Earth water cycle.

How a feeling of satiety unconsciously controls body sensation

Martin Diers let healthy women go through a door in a rich and hungry state.
Credit: LWL Clinic

Hungry - full! Thick or thin? Researchers at the Bochum University Hospital are studying the body structure of healthy women.

Whether looking at your own body in the mirror or classifying your body feeling when walking through a door - in people with an eating disorder, the body image and body scheme have been proven to be disturbed. For a study, a team of scientists led by Prof. Dr. Martin Diers from the LWL University Clinic for Psychosomatic Medicine and Psychotherapy at RUB only healthy, normal weight test subjects run through a door, both hungry and saturated, thus demonstrating that hunger and satiety have an active influence on the body's scheme - the unconscious body feeling. For further research on eating disorders, it is important to consider body image and body scheme differently based on the mechanisms of action. In a specialist article in Scientific Reports, the scientists report on the results.

Sunday, February 13, 2022

Fermi's 12-year View of the Gamma-ray Sky

 

Credit: NASA/EGRET Team and NASA/DOE/Fermi LAT Collaboration
Hi-Res Zoomable Still Image

This animation cycles between images that encapsulate decades of progress in gamma-ray astrophysics. The lower-resolution image shows the sky as seen by the EGRET instrument aboard NASA's Compton Gamma-Ray Observatory (1991 to 2000) using gamma rays above 100 million electron volts. Lighter colors indicate greater numbers of gamma rays. The most prominent feature is the central plane of our galaxy, which runs across the middle of the map, a result of gamma rays produced when accelerated particles strike interstellar gas and starlight. The largest yellow spot on the right side of the galactic plane is the Vela pulsar, one of five new gamma-ray pulsars EGRET discovered. The prominent reddish blob at top right is the blazar 3C 279. The all-sky map produced by Fermi's Large Area Telescope (LAT), using 12 years of data, is sharper, more detailed, and shows gamma rays of much higher energy than EGRET's. In its first five years, the LAT detected more than 10 times the number of gamma-ray sources seen by EGRET and had captured more high-energy gamma rays from a single source, the Vela pulsar, than the total number EGRET detected from all sources.

These all-sky views show how the sky appears at energies greater than 1 billion electron volts (GeV) according to 12 years of data from NASA's Fermi Gamma-ray Space Telescope. (For comparison, the energy of visible light is between 2 and 3 electron volts.) The image contains 144 months of data from Fermi's Large Area Telescope; for better angular resolution, the map shows only gamma rays detected at the front of the instrument's tracker. Lighter colors indicate brighter gamma-ray sources. The images show the entire sky in galactic coordinates, in which the center is the center of our galaxy. The bright midplane of our galaxy runs across the images.

Source/Credit: NASA / GSFC

sn021322_01


Reusable plastic bottles release hundreds of chemicals

Selina Tisler in the lab
Credit: University of Copenhagen

Have you ever experienced the strange taste of water after it has been in a reusable plastic bottle for a while? It appears that there is a solid, yet worrying reason for this.

Two chemists from the University of Copenhagen have studied which chemical substances are released into liquids by popular types of soft plastic reusable bottles. The results were quite a surprise.

"We were taken aback by the large number of chemical substances we found in water after 24 hours in the bottles. There were hundreds of substances in the water – including substances never before found in plastic, as well as substances that are potentially harmful to health. After a dishwasher cycle, there were several thousand," says Jan H. Christensen, Professor of Environmental Analytical Chemistry at the University of Copenhagen’s Department of Plant and Environmental Sciences.

Endocrine disruptors and insecticide

Professor Christensen and fellow researcher Selina Tisler detected more than 400 different substances from the bottle plastic and over 3,500 substances derived from dishwasher soap. A large portion of these are unknown substances that the researchers have yet to identify. But even of the identified chemicals, the toxicity of at least 70 % remains unknown.

COVID-19 vaccination may protect against variants better than natural infection

A Stanford study found that COVID-19 vaccines generate antibodies that are more capable of recognizing viral variants than are those created by natural infection.
Credit: Steve Fisch

Antibodies generated by COVID-19 vaccines are more suited to recognizing viral variants than antibodies that arise from natural infection, according to a study by researchers at Stanford Medicine.

A key finding of the study might explain why: Regions in lymph nodes known as germinal centers — where antibodies are chosen and amplified by the immune system — are highly active for several weeks after vaccination. In contrast, the structure and cell composition of germinal centers are profoundly disrupted in people with fatal cases of COVID-19.

“Vaccination generates a range of antibodies capable of responding to viral antigens beyond the original exposure,” said Scott Boyd, MD, PhD, associate professor of pathology. “This greater breadth of antibodies suggests that vaccination is likely to be more protective against viral variants than immunity generated by previous infection.”

Boyd shares a senior authorship of the study, which was published in Cell, with Kari Nadeau, MD, PhD, the Naddisy Foundation Professor in Pediatric Food Allergy, Immunology, and Asthma. The lead authors are postdoctoral scholar Katharina Röltgen, PhD; former postdoctoral scholar Sandra Nielsen, PhD; clinical assistant professor of pathology Oscar Silva, MD, PhD; and life science researcher Sheren Younes, MD, PhD.

Friday, February 11, 2022

Eating prunes may help protect against bone loss in older women

It’s already well known that prunes are good for your gut, but new Penn State research suggests they may be good for bone health, too.

In a research review, the researchers found that prunes can help prevent or delay bone loss in postmenopausal women, possibly due to their ability to reduce inflammation and oxidative stress, both of which contribute to bone loss.

“In postmenopausal women, lower levels of estrogen can trigger a rise of oxidative stress and inflammation, increasing the risk of weakening bones that may lead to fractures,” said Connie Rogers, associate professor of nutritional sciences and physiology. “Incorporating prunes into the diet may help protect bones by slowing or reversing this process.”

The review was recently published in the journal Advances in Nutrition.

Osteoporosis is a condition in which bones become weak or brittle that can happen to anyone at any age, but according to the researchers is most common among women over the age of 50. The condition affects more than 200 million women worldwide, causing almost nine million fractures each year.

While medications exist to treat osteoporosis, the researchers said there is a growing interest in ways to treat the condition with nutrition.

“Fruits and vegetables that are rich in bioactive compounds such as phenolic acid, flavonoids and carotenoids can potentially help protect against osteoporosis,” said Mary Jane De Souza, professor of kinesiology and physiology, “with prunes in particular gaining attention in previous research.”

Scientists breaking barriers to treating heart failure

New technology that could radically improve the outlook for patients with serious heart conditions has been developed by scientists at the Auckland Bioengineering Institute (ABI) and the Universities of Bristol and Bath together with Ceryx Medical Limited.

Julian Paton, currently Professor of Translational Physiology at ABI, began studying the relationship between the heartbeat and respiration more than a decade ago while at Bristol's School of Physiology, Pharmacology & Neuroscience. He has since worked with his team at UK-based Ceryx Medical, the company he founded while at Bristol, to develop ‘Cysoni’, a unique cardiac rhythm management device.

The bionic device paces the heart with real-time respiratory modulation. The innovation stems from the idea that heart rate increases and decreases with each breath in normal physiology, termed ‘respiratory sinus arrhythmia’ (RSA). Cysoni replicates this natural interaction, triggering heartbeats based on respiratory function, as opposed to the usual ‘metronomic’ generation by traditional pacemakers. This sets Cysoni apart from existing devices, which generate an output with no breath-by-breath induced variation in the inter-beat interval. In essence, Cysoni listens and responds to the cardiorespiratory system and optimizes its performance.

The team’s studies found that RSA pacing increased cardiac output by 20 per cent, compared to monotonic pacing. This increase in output led to a significant decrease in heart failure-associated symptoms such as apneas and significant improvements in performance during exercise. It also reversed cardiomyocyte hypertrophy and restored the T-tubule structure that is essential for force generation. This repair of cardiac damage indicative of heart failure is particularly exciting.

Two-dimensional material could store quantum information at room temperature

Artistic rendition of isolated spins on hexagonal boron nitride under an optical microscope 
Credit: Qiushi Gu

Quantum memory is a major building block to be addressed in the building of a quantum internet, where quantum information is securely stored and sent via photons, or particles of light.

Researchers from the Cavendish Laboratory at the University of Cambridge, in collaboration with colleagues from UT Sydney in Australia, have identified a two-dimensional material, hexagonal boron nitride, that can emit single photons from atomic-scale defects in its structure at room temperature.

The researchers discovered that the light emitted from these isolated defects gives information about a quantum property that can be used to store quantum information, called spin, meaning the material could be useful for quantum applications. Importantly, the quantum spin can be accessed via light and at room temperature.

The finding could eventually support scalable quantum networks built from two-dimensional materials that can operate at room temperature. The results are reported in the journal Nature Communications.

Future communication networks will use single photons to send messages around the world, which will lead to more secure global communication technologies.

Featured Article

Autism and ADHD are linked to disturbed gut flora very early in life

The researchers have found links between the gut flora in babies first year of life and future diagnoses. Photo Credit:  Cheryl Holt Disturb...

Top Viewed Articles