. Scientific Frontline: 2025

Tuesday, February 11, 2025

Mystery solved: New study reveals how DNA repair genes play a major role in Huntington's disease

Dr. Xiangdong William Yang
Photo Credit: Courtesy of UCLA/Health

A new UCLA Health study has discovered in mouse models that genes associated with repairing mismatched DNA are critical in eliciting damages to neurons that are most vulnerable in Huntington's disease and triggering downstream pathologies and motor impairment, shedding light on disease mechanisms and potential new ways to develop therapies. 

Huntington’s disease is one of the most common inherited neurodegenerative disorders that typically begins in adulthood and worsens over time. Patients begin to lose neurons in specific regions of the brain responsible for movement control, motor skill learning, language and cognitive function. Patients typically live 15 to 20 years after diagnosis with symptoms worsening over time. There is no known cure or therapy that alters the course of the disease.

The cause of Huntington's disease was discovered over three decades ago--a "genetic stutter" mutation involves repeats of three letters of the DNA, cytosine-adenine-guanine (CAG), in a gene called huntingtin. Healthy individuals usually have 35 or fewer CAG repeats, but people inherited with mutation of 40 or more repeats will develop the disease. The more CAG repeats a person inherits, the earlier the disease onset occurs. However, how the mutation causes the disease remains poorly understood. 

Research yields eco-friendly way to separate, recycle refrigerants tied to climate crisis

Lead author Abby Harders, who earned her doctorate in chemical and petroleum engineering at the University of Kansas, now serves as head of research and development at Icorium Engineering, situated in KU’s Innovation Park.
Photo Credit: Max Jiang

A scholarly report in the journal Science Advances from researchers at the University of Kansas shows a new eco-friendly method for separating the chemicals found in common refrigerants for easier recycling at industrial scale.

“The motivation of this work is to enable separation of highly complex gaseous refrigerant mixtures,” said lead author Abby Harders, who performed the research as a KU doctoral student in the research group of co-author Mark Shiflett, Foundation Distinguished Professor of Chemical and Petroleum Engineering. “This effort has been driven by climate legislation phasing out certain hydrofluorocarbon (HFC) refrigerants.”

The paper's key innovation uses membranes — amorphous fluorinated polymers, to be specific — that efficiently isolate complex refrigerant mixtures. Other separation methods, like distillation, are less effective because of the complex composition of the mixtures. Harders said the membranes are fabricated to allow some gases to pass through while restricting others — resulting in effective purification.

To demonstrate the technology could scale to industrial viability, the team — including many associated with KU’s Wonderful Institute for Sustainable Engineering — developed a custom-coating process to create submicron coatings on the membrane’s porous supports, creating composite hollow fibers. The results show a functional prototype, proving the technology’s usefulness to firms engaged in refrigerant recovery and reuse. 

Innovative target design leads to surprising discovery in laser-plasma acceleration

Researchers studying laser-driven proton acceleration introduced an innovative, self-replenishing water sheet target to address the inefficiency of replacing targets after each laser pulse. The target had a surprising side effect, resulting in a naturally focused, more tightly aligned proton beam. 
Image Credit: Greg Stewart/SLAC National Accelerator Laboratory)

Scientists have developed a groundbreaking method for generating fast, bright proton beams using a high-repetition-rate laser-plasma accelerator. This work, published in Nature Communications, resolves several long-standing challenges and ushers this technology to the threshold of real-world applications – all thanks to a stream of water. 

“These exciting results pave the way for new applications of relativistic high-power lasers for applications in medicine, accelerator research, and inertial fusion,” said Siegfried Glenzer, professor of photon science and the director of the High Energy Density Science division at the Department of Energy's SLAC National Accelerator Laboratory. 

Celebrating 15 Years of Women and Girls in Science at KAUST

Photo Credit: Courtesy of King Abdullah University of Science and Technology

This year marks the 10th anniversary of the United Nation’s International Day of Women and Girls in Science. It also marks 15 years since King Abdullah University of Science and Technology (KAUST) was established as the first mixed-gender university in Saudi Arabia. Since then, KAUST has been a pioneer in championing women and girls in science in the Kingdom and across the Middle East. Today we celebrate all KAUST’s female graduates and scientists, many of whom have achieved remarkable success in their careers, such as becoming professors at leading universities worldwide, taking leadership roles in Saudi ministries and giga-projects, and founding tech companies that drive investment and create jobs in the Kingdom.     

KAUST's world-class research and education, supported by initiatives and projects like the KAUST Gifted Student Program (KGSP), the Ibn Rushd fellowship program and the KAUST Entrepreneurship Center, have been instrumental in this success. These programs nurture talent, foster innovation and empower women to excel in science and technology.   

Opening for a new type of drug for Alzheimer’s Disease

Kaj Blennow and Tohidul Islam.
Photo Credit: Johan Wingborg

A complementary drug to combat Alzheimer’s disease could target a specific part of the nerve cell protein tau. This is the finding of research from the University of Gothenburg, which also offers a better way to measure the effect of treatment among patients.

Researchers from the University of Gothenburg, together with colleagues from the University of Pittsburgh in the US, published their findings in the journal Nature Medicine.

The study provides insights into what happens during the earliest phase when the protein tau is transformed into thread-like strands (fibrils) in the nerve cells. This is one of the processes in Alzheimer’s disease and occurs alongside the formation of amyloid plaques. In healthy individuals, the protein tau stabilizes the tubular building blocks (microtubules) that make up the long projections of the nerve cells.

During the development of Alzheimer’s disease, tau undergoes pathological changes. First, tau forms small, soluble aggregates that are secreted from the nerve cells and are thought to be able to spread these changes to other nerve cells. The protein is then converted into larger, harmful, thread-like strands in the nerve cells.

How Botox enters our cells

Volodymyr M. Korkhov (left) and Richard Kammerer of the Center for Life Sciences at PSI have made important advances towards understanding how botulinum neurotoxin, botox for short, enters our nerve cells.
Photo Credit: © Paul Scherrer Institute PSI/Mahir Dzambegovic

Botulinum toxin A1, better known under the brand name Botox, is not only a popular cosmetic agent, but also a highly effective bacterial neurotoxin that – when carefully dosed – can be used as a drug. It blocks the transmission of signals from nerves to muscles: This can relax muscles under the skin, which in cosmetics is used to smooth facial features. It can also alleviate conditions that are caused by cramping muscles or faulty signals from nerves, such as spasticity, bladder weakness, or misalignment of the eyes. However, if the dose is too high, the use of Botox can be fatal due to paralysis of the respiratory muscles. This can happen as a result of bacterial meat poisoning and is called botulism.

To make the most effective use of botulinum toxin as a drug, to precisely control its action, and to expand the range of possible applications of the toxin, researchers want to better understand how the toxin enters nerve cells to exert its effect. Until now, little was known about this.  “This is mainly because we had no structural data on what the toxin looks like in its full-length form when binding to its nerve cell's receptor,” says Richard A. Kammerer of the PSI Center for Life Sciences. So far there had only been studies on the structure of individual domains of the toxin – that is, specific parts of its complex molecular structure – and on the structure of such domains in complex with the receptor or one of its domains. 

Monday, February 10, 2025

Collection of tiny antennas can amplify and control light polarized in any direction

New polarization-independent, highly resonant metasurfaces can precisely amplify and control light without requiring incoming light (top left) to be oriented and traveling in a certain direction.
Image Credit: Bo Zhao

Antennas receive and transmit electromagnetic waves, delivering information to our radios, televisions, cell phones and more. Researchers in the McKelvey School of Engineering at Washington University in St. Louis imagines a future where antennas reshape even more applications.

Their new metasurfaces, ultra-thin materials made of tiny nanoantennas that can both amplify and control light in very precise ways, could replace conventional refractive surfaces from eyeglasses to smartphone lenses and improve dynamic applications such as augmented reality/virtual reality and LiDAR.

While metasurfaces can manipulate light very precisely and efficiently, enabling powerful optical devices, they often suffer from a major limitation: Metasurfaces are highly sensitive to the polarization of light, meaning they can only interact with light that is oriented and traveling in a certain direction. While this is useful in polarized sunglasses that block glare and in other communications and imaging technologies, requiring a specific polarization dramatically reduces the flexibility and applicability of metasurfaces.

Influenza A viruses adapt shape in response to environmental pressures

Colorized transmission electron micrograph of influenza A virus particles, colorized red and gold, isolated from a patient sample and then propagated in cell culture. Influenza A can infect both humans and animals, including birds and pigs. More specifically, this image features the H3N2 influenza strain, isolated from a patient in Victoria, Australia, in 1975. Notable for forming both spheric
Image Credit: National Institute of Allergy and Infectious Diseases

Influenza A virus particles strategically adapt their shape—to become either spheres or larger filaments—to favor their ability to infect cells depending on environmental conditions, according to a new study from National Institutes of Health (NIH) scientists. This previously unrecognized response could help explain how influenza A and other viruses persist in populations, evade immune responses, and acquire adaptive mutations, the researchers explain in a new study published in Nature Microbiology.

The study, led by intramural researchers at NIH’s National Institute of Allergy and Infectious Diseases (NIAID), was designed to determine why many influenza A virus particles exist as filaments. The filament shape requires more energy to form than a sphere, they state, and its abundance has been previously unexplained. To find the answer, they developed a way to observe and measure real-time influenza A virus structure during formation.

Study reveals reasons for misdiagnosis of frontotemporal dementia

Researchers have discovered patterns in the misdiagnosis of frontotemporal dementia
Photo Credit: Anna Shvets

University of Queensland researchers discovered that nearly 70 per cent of suspected frontotemporal dementia patients ultimately did not have the disease, in a study aimed at identifying factors that contribute to misdiagnosis of this notoriously difficult to diagnose disorder.

Psychiatrist Dr Joshua Flavell, working with cognitive neurologist Professor Peter Nestor at the Mater Hospital Memory and Cognitive Disorders clinic and UQ’s Queensland Brain Institute, analyzed data from 100 patients suspected of having frontotemporal dementia who had been referred by specialist physicians like neurologists, psychiatrists or geriatricians.

“Of the 100 patients, 34 were true-positive, and 66 were false-positive for frontotemporal dementia,” Dr Flavell said.

“We found that misinterpretation of brain scans, particularly nuclear imaging, led to 32 patients being incorrectly diagnosed.

How Does the Brain Differentiate New Stimuli from Old Ones?

The illustration represents how sounds are encoded in the cerebral cortex, with neurons (at right) using "echoing" activity to track auditory stimuli to change and improve its predictions of the future.
Illustration Credit: Yuriy Shymkiv

The cerebral cortex is the largest part of a mammal’s brain, and by some measures the most important. In humans in particular, it’s where most things happen—like perception, thinking, memory storage, and decision-making. One current hypothesis suggests that the cortex’s primary role is to predict what’s going to happen in the future by identifying and encoding new information it receives from the outside world and comparing it with what was expected to occur.

A new study published today in the journal Neuron takes a big step toward proving that hypothesis. The paper’s lead author is Yuriy Shymkiv, a postdoctoral fellow in the lab of Professor Rafael Yuste.

“We found that the cortex acts like a memory machine, encoding new experiences, and predicting the very near future,” Shymkiv said.

Purdue biochemists discover self-repair function in key photosynthetic protein complex

Sujith Puthiyaveetil and Steve McKenzie look at a plant thylakoid in a lab at the biochemistry building at Purdue University.
Photo Credit: Purdue Agricultural Communications/Joshua Clark

Cyanobacteria began contributing oxygen to Earth’s mostly noxious atmosphere more than 2 billion years ago. The photosystem II protein complex now shared by various lineages of cyanobacteria, algae and land plants has served as a major site of oxygen production throughout the history of life on Earth ever since.

Ironically, receiving too much light can damage photosystem II and erode the photosynthetic efficiency of plants. Purdue University biochemists Steven McKenzie and Sujith Puthiyaveetil have gleaned new, long-hidden details about how photosystem II repairs itself. McKenzie and Puthiyaveetil’s findings have been published in the journal Plant Communications.

“The photosystem II splits water and extracts electrons and protons, leaving oxygen as a by-product. Photosystem II thereby powers life on Earth,” said Puthiyaveetil, associate professor of biochemistry. Even so, “it’s still fairly poorly understood how these huge protein complexes that use light energy to produce oxygen are able to be repaired and maintained so efficiently across different lineages of plants, algae and cyanobacteria.”

Rice scientists create tiny, water-based reactors for green chemistry

Researchers at Rice, including Ying Chen and Angel Martí, have developed a new method for performing chemical reactions using water instead of toxic solvents.
Photo Credit: Jeff Fitlow/Rice University.

Researchers at Rice University have developed a new method for performing chemical reactions using water instead of toxic solvents. The scientists created microscopic reactors capable of driving light-powered chemical processes by designing metal complex surfactants (MeCSs) that self-assemble into nanoscale spheres called micelles. This innovation could drastically reduce pollution in industries including pharmaceuticals and materials science, where harmful organic solvents are often necessary.

The new micellar technology represents a step forward in sustainable chemistry. These self-assembled micelles form in water, where their hydrophobic cores provide a unique environment for reactions, even with materials that are typically insoluble in water. The research team led by Angel Martí, professor and chair of chemistry at Rice, demonstrated that this system can efficiently perform photocatalytic reactions while eliminating the need for hazardous substances. The study was published in Chemical Science Feb. 10.

“Our findings show how powerful molecular design can be in tackling chemical sustainability challenges while maintaining high chemical performance,” Martí said. “We’ve created a tool that could transform how chemical reactions are performed, reducing environmental harm while increasing efficiency.”

Anomaly in the Deep Sea: Extraordinary Accumulation of Rare Atoms Could Improve Geological Dating Methods

Schematic depiction of production and incorporation of cosmogenic 10Be into ferromanganese crusts. A pronounced anomaly in 10Be concentration about 10 million years ago was discovered. This anomaly has great potential as time marker for the Late Miocene.
Image Credit: © HZDR / blrck.de

Beryllium-10, a rare radioactive isotope produced by cosmic rays in the atmosphere, provides valuable insights into the Earth's geological history. A research team from the Helmholtz-Zentrum Dresden-Rossendorf (HZDR), in collaboration with the TUD Dresden University of Technology and the Australian National University (ANU), has discovered an unexpected accumulation of this isotope in samples taken from the Pacific seabed. Such an anomaly may be attributed to shifts in ocean currents or astrophysical events that occurred approximately 10 million years ago. The findings hold the potential to serve as a global time marker, representing a promising advancement in the dating of geological archives spanning millions of years. The team presents its results in the scientific journal Nature Communications.

Radionuclides are types of atomic nuclei (isotopes) that decay into other elements over time. They are used to date archaeological and geological samples, with radiocarbon dating being one of the most well-known methods. In principle, radiocarbon dating is based on the fact that living organisms continuously absorb the radioactive isotope carbon-14 (14C) during their lifetime. Once an organism dies, the absorption ceases, and the 14C content starts to decrease through radioactive decay with a half-life of approximately 5,700 years. By comparing the ratio of unstable 14C to stable carbon-12 (12C), researchers can determine the date of the organism's death.

Engineers Design New Autonomous System to Monitor Arctic Ice Melt

Photo Credit: Bernd Hildebrandt

The rapid melting and thinning of the Arctic ice have sparked serious concerns in the scientific community. In addition, sea ice thickness also has decreased, which makes ice cover more vulnerable to warming air and ocean temperature.

Understanding the ecological role of sea ice in the Arctic is crucial, particularly because the extent of sea ice in the region has been decreasing at an unprecedented rate. What would happen to the Arctic marine ecosystem if the sea ice melted even faster? To answer these questions, a long-term monitoring and data collection system is necessary in the harsh Arctic environment.

However, direct observation is challenging as satellite sensors have a coarse spatial resolution and cannot detect the fine fractal structure of the ice. Deploying human-crewed ships to the area is also difficult due to extreme weather conditions and obstacles posed by floating broken ice. Moreover, traditional ocean observation methods offer limited temporal and spatial coverage, while drones and autonomous underwater vehicles (AUVs) are hindered by energy constraints that restrict their research potential.

To overcome these challenges, researchers from the College of Engineering and Computer Science at Florida Atlantic University have proposed a design of an alternative, autonomous observational method, which holds promise for improving the autonomy of marine vehicles, aiding in maritime missions, and gaining a deeper understanding of how melting Arctic sea ice affects marine ecosystems.

UP-led astronomy research team explores formation of giant radio galaxies

An artistic representation of a what a giant cosmic jet the size of the distance between the Milky Way and Andromeda could look like
Illustration Credit: Courtesy of University of Pretoria

Enabled by supercomputing, University of Pretoria (UP) researchers have led an international team of astronomers that has provided deeper insight into the entire life cycle (birth, growth and death) of giant radio galaxies, which resemble “cosmic fountains” – jets of superheated gas that are ejected into near-empty space from their spinning supermassive black holes.

The findings of this breakthrough study were published in the journal Astronomy & Astrophysics, and challenge known theoretical models by explaining how extragalactic cosmic fountains grows to cover such colossal distances, raising new questions about the mechanisms behind these vast cosmic structures.

The research team – which was led by astrophysicist Dr Gourab Giri, who holds a postdoctoral fellowship from the South African Radio Astronomy Observatory at UP –  consisted of Associate Professor Kshitij Thorat and Extraordinary Professor Roger Deane of UP’s Faculty of Natural and Agricultural Sciences; Prof Joydeep Bagchi of Christ University in India; Prof DJ Sailkia of the Inter-University Centre for Astronomy and Astrophysics, also in India; and Dr Jacinta Delhaize of the University of Cape Town (UCT).

This study tackles a key question in modern astrophysics: how these structures, which are larger than galaxies and are made up of black hole jets, interact over cosmological timescales with their very thin, gaseous surroundings. 

Titanium-Based Prosthesis Alloy Scientists Have Tested Deformation

The co-authors of the development, as well as specialists from the UrFU Department of Heat Treatment and Metal Physics.
Photo Credit: Rodion Narudinov

Scientists from Ural Federal University, Institute of Strength Physics and Materials Science of the SB RAS and National Research Tomsk Polytechnic University have tested new titanium-based alloys, which have several advantages over traditional medical ones. Two types of titanium alloys — TNZ (including niobium and zirconium) and multi-element TNZTS (with niobium, zirconium, tantalum and tin) — were subjected to uniaxial pressing and multi-pass rolling. As a result of exposure, ultrafine-grained structures were formed in the alloys, which significantly increased the strength and hardness of the material. The results of the research were published in the Materials Letters Journal

Crystal structure of titan (α-phase) that formed after tests trial improved the strength characteristics of the TNZ-alloy, but at the same time reduced its plasticity and Young’s modulus, important characteristics of materials for prostheses. In case of elastic deformations of the bone—implant system, the load on the tissue depends on the ratio of the Young's modulus of the implant material and bone tissue. The lower this ratio, the lower the probability of necrosis and destruction of bone by implant pressure. Mechanical and biocompatibility increase the prospects for the introduction of materials developed by scientists in medicine, aerospace and defense industries.

Sunday, February 9, 2025

Lockheed Martin Matures Next Secure Communications Satellite Solution for U.S. Space Force with Major Design Milestone

MUOS Satellite From Lockheed Martin
Mobile User Objective System (MUOS) satellites, the fifth one of which is seen here in production at Lockheed Martin, are vital to providing secure communications for allied military forces around the world.
Photo Credit: Lockheed Martin.

Lockheed Martin has now proven the readiness of its satellite design in support of the U.S. Space Force (USSF) Space Systems Command’s upcoming Mobile User Objective System (MUOS) Service Life Extension (SLE) program through successful execution of an Early Design Review (EDR). Future MUOS satellites planned as part of the program will be critical in continuing to provide crystal-clear, secure communications to military forces on the move.

Lockheed Martin is one of two companies selected to develop future MUOS satellite concepts under Phase 1 of the program, centered on early design activities and risk reduction.

“In less than the initial one-year base period of performance, our team went above and beyond to deliver not only a successful early design review – but one so robust that it passed the rigorous standards of a more advanced design assessment,” said Maria Hartin-Swart, program management director for Lockheed Martin’s MUOS SLE development efforts.

Research in Fruit Flies Pinpoints Brain Pathways Involved in Alcohol-Induced Insomnia

Adrian Rothenfluh, PhD (left), and Maggie Chvilicek (right), authors on the recent study.
Photo Credit: Courtesy of University of Utah Health

Alcohol use disorder, which affects over 10% of Americans, can lead to persistent and serious insomnia. Difficulties falling asleep and staying asleep can last even after months of sobriety, increasing the risk of relapse. But treating withdrawal-related insomnia is difficult, partly because what’s going on in the brain in this condition remains largely mysterious.

 Now, research in fruit flies has identified specific brain signals and groups of brain cells that are involved in alcohol-induced insomnia. This work could ultimately lead to targeted treatments for alcohol-related sleep loss, helping people recover from alcohol use disorder.

  “The effects of alcohol on sleep seem to be localized to a particular cell type in the brain, which is not something that’s ever been shown before,” says Maggie Chvilicek, graduate researcher in neuroscience at the University of Utah and lead author on the study. She adds that these cells often do similar things in flies and humans. “The mechanism that we identified is something that very likely could also exist in a mammalian brain.”

Research Pinpoints Weakness in Lung Cancer’s Defenses

A microscope image of lung cancer cells (purple) containing the activated form of a metabolic enzyme called GUK1 (brown) that supports cancer growth.
Image Credit: Haigis lab

Lung cancer is a particularly challenging form of cancer. It often strikes unexpectedly and aggressively with little warning, and it can shapeshift in unpredictable ways to evade treatment.

While researchers have gleaned important insights into the basic biology of lung cancer, some of the disease’s molecular maneuvers have remained elusive.

Now, a team led by scientists at Harvard Medical School has made strides in understanding how a genetic flaw in some lung cancers alters cancer cell metabolism to fuel the disease.

Working with mouse models and human cancer cells, the researchers identified a metabolic enzyme called GUK1 in lung cancers harboring an alteration in the ALK gene. Their experiments showed that GUK1 plays an important role in boosting metabolism in tumor cells to help them grow.

The findings, reported in Cell and supported in part by federal funding, provide a clearer picture of how metabolism works in lung cancer.

The research could set the stage for developing therapies that target GUK1 to curb cancer growth, the team said.

UCLA researchers find high levels of the industrial chemical BTMPS in fentanyl

Image Credit: Colin Davis

A UCLA research team has found that drugs being sold as fentanyl contain high amounts of the industrial chemical bis(2,2,6,6-tetramethyl-4-piperidyl) sebacate, or BTMPS. This new substance of concern emerged in the illicit drug supply nearly simultaneously in multiple U.S. locations from coast-to-coast.

From June through October 2024, the team quantitatively tested samples of drugs sold as fentanyl that had high levels of the chemical, which belongs to a class of compounds called hindered amine light stabilizers and has a variety of applications including as a sealant, adhesive, and additive to plastics. 

The paper is published in the peer-reviewed journal JAMA.

“The emergence of BTMPS is much more sudden than previous changes in the illicit drug supply, and the geographic range where it was detected nearly simultaneously suggests it may be added at a high level in the supply chain,” said study lead Chelsea Shover, an assistant professor-in-residence at the David Geffen School of Medicine at UCLA. “This is concerning because BTMPS is not approved for human consumption, and animal studies have shown serious health effects such as cardiotoxicity and ocular damage, and sudden death at certain doses.” 

Saturday, February 8, 2025

Women of Science: A Legacy of Achievement

Future generations to pursue their passions and break down barriers in the pursuit of knowledge.
Image Credit: Scientific Frontline stock image

Throughout history, women have made groundbreaking contributions to science, despite facing significant societal barriers and a lack of recognition. Their relentless pursuit of knowledge and innovation has shaped our understanding of the world and paved the way for future generations of scientists. This article celebrates the achievements of some of these remarkable women, highlighting their struggles and the impact of their work.

The women featured in this article, along with countless others throughout history, have made invaluable contributions to the advancement of science. Their achievements, often accomplished in the face of adversity and societal barriers, have shaped our understanding of the world and paved the way for future generations of scientists. These women demonstrate the power of perseverance, the importance of challenging established norms, and the profound impact that individual dedication can have on scientific progress. By recognizing and celebrating their legacies, we not only honor their contributions but also inspire future generations to pursue their passions and break down barriers in the pursuit of knowledge.

Friday, February 7, 2025

Discovery of unexpected collagen structure could ‘reshape biomedical research’

Jeffrey Hartgerink is a professor of chemistry and bioengineering at Rice.
Photo Credit: Courtesy of Jeffrey Hartgerink / Rice University

Collagen, the body’s most abundant protein, has long been viewed as a predictable structural component of tissues. However, a new study led by Rice University’s Jeffrey Hartgerink and Tracy Yu, in collaboration with Mark Kreutzberger and Edward Egelman at the University of Virginia (UVA), challenges that notion, revealing an unexpected confirmation in collagen structure that could reshape biomedical research.

The researchers used advanced cryo-electron microscopy (cryo-EM) to determine the atomic structure of a packed collagen assembly that deviates from the traditionally accepted right-handed superhelical twist. Published in ACS Central Science, the study suggests collagen’s structural diversity may be greater than previously believed.

“This work fundamentally changes how we think about collagen,” said Hartgerink, professor of chemistry and bioengineering. “For decades, we have assumed that collagen triple helices always follow a strict structural paradigm. Our findings show that collagen assemblies can adopt a wider range of conformations than previously thought.”

Halas awarded Benjamin Franklin Medal in Chemistry

Rice University’s Naomi Halas is the recipient of the 2025 Benjamin Franklin Medal in Chemistry.
 Photo Credit: Jeff Fitlow/Rice University

Rice University’s Naomi Halas is the recipient of the 2025 Benjamin Franklin Medal in Chemistry, awarded “for the creation and development of nanoshells — metal-coated nanoscale particles that can capture light energy — for use in many biomedical and chemical applications.”

Halas’ work has pioneered new insights into how light and matter interact at the smallest scales. When she joined Rice in 1989 to support the efforts of the late Richard Smalley in advancing the burgeoning field of nanoscale science and technology, her experience working on laser science in the research-intensive milieus of IBM Yorktown and AT&T Bell Laboratories gave her a unique perspective: Halas recognized that the nanoscale world was not something foreign — it was, fundamentally, chemistry.

“A lot of people were talking about nano like it was something completely new,” said Halas, who is University Professor at Rice, the institution’s highest academic rank. “But I realized it was really just chemistry viewed in a different way, and that really got me thinking about how I can combine the worlds of laser science and nanoscience.”

That shift in perspective led to the development of a new family of nanoparticles with tunable optical properties, triggering a series of influential discoveries and enabling applications in fields ranging from cancer therapy to water purification to light-driven chemistry and renewable energy.

Biology Graduate Student Contributes to Research in Neurodegenerative Disease

PhD student Asmer Aliyeva
Photo Credit: Courtesy of University at Albany

Asmer Aliyeva
, a fourth-year PhD candidate in the biology department at the College of Arts and Sciences, is working to reveal the molecular mechanisms behind neurodegenerative diseases. In collaboration with her colleagues in the Berglund Lab, Aliyeva aim is to identify possible therapeutic targets against this class of disease, with a focus on spinocerebellar ataxias (SCAs).

Spinocerebellar ataxias are a group of progressive neurodegenerative diseases that affect coordination and balance, for which there is currently no cure. Aliyeva’s research looks at transcriptomic changes in patient-derived cell lines that could holds clues for common disease mechanisms associated with different types of SCAs. 

Recent findings suggest that dysregulation of alternative splicing plays a key role in disease progression, which could lead to new biomarkers and therapeutic discoveries. Aliyeva recently led a study on this topic, coauthored with members of the Berglund Lab at the RNA Institute, published in the journal Human Molecular Genetics

Aliyeva's research also examines how defects in alternative splicing contribute to the disease and whether these changes can be used as potential biomarkers for monitoring disease onset and progression. This work is a crucial first step in providing a better understanding of potential pathways for future treatments of these diseases.

Native bee populations can bounce back after honey bees move out

A native bee sits on a purple flower on the left, while a honey bee sits on a yellow flower on the right.  Photo Credit: © Margarita López-Uribe

Managed honey bees have the potential to affect native bee populations when they are introduced to a new area, but a study led by researchers at Penn State suggests that, under certain conditions, the native bees can bounce back if the apiaries are moved away.

The research, published in the Journal of Insect Science, examined the effects of migratory beekeeping — the practice of moving honey bee colonies to a different location for part of the year — on native bee populations. 

The researchers found that when managed honey bees were moved into an area, the population of native bees decreased in abundance and diversity. However, in places where apiaries were kept for years and then removed, the native bee populations once again increased in both total numbers and species diversity.

Margarita López-Uribe, the Lorenzo L. Langstroth Early Career Professor of Entomology in the College of Agricultural Sciences and co-author of the paper, said the findings suggest that while migratory beekeeping can be a disturbance to native bees, it may also be possible for those populations to recover.

Spliceosome: How Cells Avoid Errors When Manufacturing Mrna

Quality control during splicing: When an error in the precursor mRNA is detected, the spliceosome is blocked, the recruited control factors interrupt the “normal” cycle, and a molecular short circuit causes the spliceosome to disassemble.
Image Credit: © K. Wild, K. Soni, I. Sinning

A complex molecular machine, the spliceosome, ensures that the genetic information from the genome, after being transcribed into mRNA precursors, is correctly assembled into mature mRNA. Splicing is a basic requirement for producing proteins that fulfill an organism’s vital functions. Faulty functioning of a spliceosome can lead to a variety of serious diseases. Researchers at the Heidelberg University Biochemistry Center (BZH) have succeeded for the first time in depicting a faultily “blocked” spliceosome at high resolution and reconstructing how it is recognized and eliminated in the cell. The research was conducted in collaboration with colleagues from the Australian National University.

Genetic research unlocks new ways to prevent and treat multiple long-term conditions

Image Credit: Scientific Frontline stock image

The largest study to date to analyze millions of both genetic and patient records on the long-term health conditions of later life has identified opportunities for new ways to prevent and treat multiple overlapping conditions.  

Currently, nine million people in the UK live with two or more long-term conditions at the same time – known as multimorbidity. Their treatment accounts for half of the NHS budget. 

Led by the University of Exeter Medical School and funded by the Medical Research Council and the National Institute for Health and Care Research, the GEMINI study looked at both genetics and clinical information from more than three million people in the UK and Spain.  

Published in eBioMedicine  research has identified genetic overlaps in 72 long-term health conditions associated with ageing, to identify where specific genes are linked to two or more conditions. With more than 2,500 combinations of conditions analyzed, the program aims to unlock cases where a drug or prevention strategies can prevent or delay the onset of multimorbidity. It also revealed genetic connections that explain why certain conditions may be more likely to co-occur in the same patient. 

Air pollution clouds the mind and makes everyday tasks challenging

Photo Credit: Chris LeBoutillier

People’s ability to interpret emotions or focus on performing a task is reduced by short-term exposure to particulate matter (PM) air pollution, potentially making everyday activities, such as the weekly supermarket shop, more challenging, a new study reveals.

Scientists discovered that even brief exposure to high concentrations of PM may impair a person’s ability to focus on tasks, avoid distractions, and behave in a socially acceptable manner.

Researchers exposed study participants to either high levels of air pollution - using candle smoke - or clean air, testing cognitive abilities before and four hours after exposure. The tests measured working memory, selective attention, emotion recognition, psychomotor speed, and sustained attention.

Publishing their findings in Nature Communications, researchers from the Universities of Birmingham and Manchester reveal that selective attention and emotion recognition were negatively affected by air pollution – regardless of whether subjects breathed normally or only through their mouths.

Air pollution impacts an aging society

Age-related health impacts of PM2.5.
Annual average AVSL (age-adjusted value of statistical life) and variation of premature deaths attributable to PM2.5 among individuals in different age groups from 2001 to 2019 across Japan’s 47 prefectures.
Image Credit: ©2025 Long et al.
(CC-BY-ND)

Air pollution is a growing health issue worldwide, and its impacts are often underestimated in aging societies like Japan. A new study led by researchers from the University of Tokyo highlights how fine particulate pollution, or PM2.5, not only worsens health outcomes, but also creates significant socioeconomic challenges in regions with aging populations and limited medical resources. The researchers hope these findings motivate policymakers to tackle the interrelated issues behind this problem.

PM2.5 refers to microscopic particles of pollution small enough to penetrate deep into the lungs and bloodstream, leading to severe respiratory and cardiovascular diseases. PM2.5 are small enough to evade the body’s natural defenses in the nose and throat, making direct prevention difficult. This becomes especially problematic in elderly populations.

“As we age, our immune systems weaken and our bodies are less able to defend against pollutants. Even moderate exposure can exacerbate pre-existing conditions, leading to higher hospitalization rates and premature mortality,” said lead author Associate Professor Yin Long. “Our study provides new insights into impacts of PM2.5 in aging regions, with a particular focus on the mismatch between those impacts and regional medical resource distribution.”

Thursday, February 6, 2025

First distributed quantum algorithm brings quantum supercomputers closer

Dougal Main and Beth Nichol working on the distributed quantum computer.
Photo Credit: John Cairns.

In a milestone that brings quantum computing tangibly closer to large-scale practical use, scientists at Oxford University’s Department of Physics have demonstrated the first instance of distributed quantum computing. Using a photonic network interface, they successfully linked two separate quantum processors to form a single, fully connected quantum computer, paving the way to tackling computational challenges previously out of reach. The results have been published in Nature. 

The breakthrough addresses quantum’s ‘scalability problem’: a quantum computer powerful enough to be industry-disrupting would have to be capable of processing millions of qubits. Packing all these processors in a single device, however, would require a machine of an immense size. In this new approach, small quantum devices are linked together, enabling computations to be distributed across the network. In theory, there is no limit to the number of processors that could be in the network.  

Improved Brain Decoder Holds Promise for Communication in People with Aphasia

Brain activity like this, measured in an fMRI machine, can be used to train a brain decoder to decipher what a person is thinking about. In this latest study, UT Austin researchers have developed a method to adapt their brain decoder to new users far faster than the original training, even when the user has difficulty comprehending language.
Image Credit: Jerry Tang/University of Texas at Austin.

People with aphasia — a brain disorder affecting about a million people in the U.S. — struggle to turn their thoughts into words and comprehend spoken language.

A pair of researchers at The University of Texas at Austin has demonstrated an AI-based tool that can translate a person’s thoughts into continuous text, without requiring the person to comprehend spoken words. And the process of training the tool on a person’s own unique patterns of brain activity takes only about an hour. This builds on the team’s earlier work creating a brain decoder that required many hours of training on a person’s brain activity as the person listened to audio stories. This latest advance suggests it may be possible, with further refinement, for brain computer interfaces to improve communication in people with aphasia.

“Being able to access semantic representations using both language and vision opens new doors for neurotechnology, especially for people who struggle to produce and comprehend language,” said Jerry Tang, a postdoctoral researcher at UT in the lab of Alex Huth and first author on a paper describing the work in Current Biology. “It gives us a way to create language-based brain computer interfaces without requiring any amount of language comprehension.”

Genetic diversity is on the decline, but this trend can be slowed

Photo Credit: Tomáš Malík

Genetic diversity is crucial to the ability of animals and plants to adapt to changes in the climate and environment. A major international meta-analysis, published in the journal Nature, shows that genetic diversity is declining globally. But there is hope – effective conservation measures can slow this trend.

For a species to adapt to changes in its environment, a high degree of genetic variation between individual entities is crucial. The greater the diversity, the more likely it is that certain genes will make, for example, a plant more resistant to drought or an animal better adapted to higher temperatures. These genes can then be passed on to future generations and contribute to the survival of the species.

An international research team that includes Uppsala University, Stockholm University and the Swedish Environmental Protection Agency has analyzed genetic changes in 628 species over a period of more than 30 years. The study is based on data from more than 80,000 scientific papers and shows that genetic diversity is declining globally, especially among birds and mammals. At the same time, there are conservation measures that have proven to be effective.

“Overall, the study shows that there are effective conservation methods and data that allow for strategic targeting of actions. But then the genetic component needs to be considered,” says Sara Kurland, Postdoctoral Fellow at the Department of Earth Sciences and one of the researchers behind the study.

New technology lights way for accelerating coral reef restoration

Improving coral feeding habits can have a positive domino effect on the marine ecosystem.
Photo Credit: Francesco Ungaro

Scientists have developed a novel tool designed to protect and conserve coral reefs by providing them with an abundance of feeding opportunities. 

The device, dubbed the Underwater Zooplankton Enhancement Light Array (UZELA), is an autonomous, programmable underwater light that works to draw in nearby zooplankton, microscopic organisms that coral feed on. 

After testing the submersible on two species of coral native to Hawaii over six months, researchers found that UZELA could greatly enhance local zooplankton density and increase the feeding rates of both healthy and bleached coral. Importantly, providing coral with greater amounts of food makes them stronger and more likely to be resilient against certain environmental threats, like heat stress or ocean acidification.

This result is impressive, especially at a time when rising ocean temperatures are forcing entire coral reefs to the cusp of collapse, said

Whale poop contains iron that may have helped fertilize past oceans

A blue whale photographed in September 2010.
Photo Credit: NOAA

The blue whale is the largest animal on the planet. It consumes enormous quantities of tiny, shrimp-like animals known as krill to support a body of up to 100 feet (30 meters) long. Blue whales and other baleen whales, which filter seawater through their mouths to feed on small marine life, once teemed in Earth’s oceans. Then over the past century they were hunted almost to extinction for their energy-dense blubber.

As whales were decimated, some thought the krill would proliferate in predator-free waters. But that’s not what happened. Krill populations dropped, too, and neither population has yet recovered.

A recent theory proposes that whales weren’t just predators in the ocean environment. Nutrients that whales excreted may have provided a key fertilizer to these marine ecosystems.

Research led by University of Washington oceanographers supports that theory. It finds that whale excrement contains significant amounts of iron, a vital element that is often scarce in ocean ecosystems, and nontoxic forms of copper, another essential nutrient that in some forms can harm life.

The open-access study, the first to look at the forms of these trace metals in what’s commonly known as whale poop, was published in January in Communications Earth & Environment.

Microplastics discovered in Antarctica

A view over the Ellsworth Mountains, West Antarctica.
Photo Credit: Steve Gibbs, BAS

Scientists have discovered microplastics in the snow near some of Antarctica’s deep field camps, revealing how far-reaching plastic pollution has become. While not new, it’s the first time these tiny pieces of plastic have been found in remote locations.

The study was conducted at field camps, at Union Glacier and Schanz Glacier (near the Ellsworth Mountains), where researchers were carrying out field work, and the South Pole where the US Antarctic Program has a research station. It is the first time a new and advanced technique has been used to detect microplastics as small as 11 micrometers (about the size of a red blood cell) in the snow in Antarctica. The study is published this week (6 February 2025) in the journal Science of the Total Environment.

The findings surprised the team as microplastics were found at concentrations ranging from 73 to 3,099 particles per liter of snow. Most of these particles (95%) were smaller than 50 micrometers (0.005 cm, the size of most human cells), suggesting previous studies may have underestimated the extent of microplastic pollution in the region due to less sensitive detection methods.

Previous methods involved hand-picking particles and fibers out of samples for laboratory analyses. However, the newer technique involves melting snow through filter paper and scanning this at a high resolution, using infrared spectroscopy, so any plastics above 11 micrometers can be identified.

Recycling the unrecyclable

Recovered carbon fibers.
This might look like something you’d see on the floor of a barber’s shop, but it’s actually a clump of reclaimed carbon fibers. Photo Credit: ©2025 Jin et al.
(CC-BY-ND)

Epoxy resins are coatings and adhesives used in a broad range of familiar applications, such as construction, engineering and manufacturing. However, they often present a challenge to recycle or dispose of responsibly. For the first time, a team of researchers, including those from the University of Tokyo, developed a method to efficiently reclaim materials from a range of epoxy products for reuse by using a novel solid catalyst.

There’s a high chance you are surrounded by epoxy compounds as you read this. They are used in electronic devices due to their insulating properties; clothing such as shoes due to their binding properties and physical robustness; building construction for the same reason; and even in aircraft bodies and wind turbine blades for their ability to contain strong materials such as carbon fibers or glass fibers. It’s hard to overstate the importance of epoxy products in the modern world. But for all their uses, they inevitably have a downside: Epoxy compounds are essentially plastics and prove difficult to deal with after their use or at the end of the life of an epoxy-containing product.

Mutations in two gene pairs point to a promising drug target in 5 percent of adult cancers

Illustration Credit: Natalie Velez, Broad Communications

Scientists from the Cancer Dependency Map (DepMap) at the Broad Institute of MIT and Harvard and Columbia University have discovered that about 5 percent of adult cancers rely heavily on a gene called PELO to survive and that disabling the gene kills those cancer cells. These cancers have mutations in one of two genes, FOCAD or TCC37.

The finding, described in Nature, is a new synthetic lethality — a pair of genetic changes that together kill cancer cells. The researchers say that PELO is a promising target, and that genetic testing could identify cancer patients with FOCAD or TCC37 mutations who would benefit from new PELO-targeting drugs.

“These cancers are a huge unmet medical need, because we don’t have effective drugs for them,” said Francisca Vazquez, co-senior author on the study along with postdoctoral researcher Edmond Chan, now an assistant professor at Columbia University. Vazquez is also director of DepMap, which systematically probes cancer cell lines for genetic vulnerabilities. 

“Targeting synthetic lethalities is a good way to expand the repertoire of tumors we’re able to treat,” Vazquez said. “This new synthetic lethality we found shows how powerful the DepMap datasets can be.”

Patricia Borck, a DepMap research scientist in Broad’s Cancer Program, is first author on the study.

Wednesday, February 5, 2025

Cutting edge technology shows promise in tackling deadly brain tumors

Delivering advanced gene-editing tools directly to the tumor site can improve the body’s defense against glioblastoma
Image Credit: Gemini

A new study led by Khuloud Al Jamal, Professor of Drug Delivery & Nanomedicine, has found an innovative strategy to combat glioblastoma (GB), a fast-growing and aggressive type of brain tumor.

GB is a brain tumor originating in the brain or spinal cord. Despite advances in cancer treatment, it can remain resistant to therapies, including immune checkpoint (ICP) blockade therapies. ICP blockade works by targeting specific proteins on immune or tumor cells to prevent tumors from evading the immune system. While effective in other cancers, this approach has shown limited success in treating GB. The is due to complex interactions between immune cells and glioblastoma stem cells (GSCs), which suppress the immune response and reduce the effectiveness of these therapies.

In the study, published in Advanced Science, Professor Al Jamal and her team revealed how they have taken a novel approach to overcome this challenge by focusing on the mesenchymal subtype of GSCs, which is particularly aggressive and therapy resistant. The study employed lipid nanoparticles (LNPs) — tiny, fat-based carriers — to transport CRISPR RNAs, an advanced gene-editing tool, to GSC and immune cells in therapeutically relevant tumor models. 

Spinal cord stimulation: A transformative option for chronic pain management

Image Credit: cottonbro studio

Chronic back and lower extremity pain are leading causes of disability worldwide, significantly impacting the quality of life and productivity of the patients affected by them. For these patients, spinal cord stimulation (SCS) — a non-pharmacological, neurostimulation treatment that involves the surgical implantation of electrodes and a power source to deliver electrical current to the spinal cord to reduce pain signals to the brain — offers an advanced, safe and minimally invasive treatment option.

SCS is not a new medical technology, but has evolved considerably since its introduction in the 1960s. “It was historically used for patients who had undergone spine surgery but continued to experience pain,” explains Jonathan Droessler, MD, a specialist in interventional physiatry at UCLA’s Department of Orthopedic Surgery.

“Today, it’s used for patients with intractable pain lasting more than six months.”

Tuesday, February 4, 2025

Cracks in Greenland Ice Sheet are growing, study finds

Crevasses at Store Glacier, a marine-terminating outlet glacier of the western Greenland Ice Sheet.
 Photo Credit: Tom Chudley (Durham University)

A new study published this week in Nature Geoscience reveals that in response to climate change, the Greenland Ice Sheet is developing significantly more surface crevasses in key regions – a change that may accelerate ice loss and contribute to rising sea levels.

The research was led by Thomas Chudley, a research assistant professor at Durham University and former research associate at The Ohio State University’s Byrd Polar and Climate Research Center. The study analyzed high-resolution 3D surface maps and found that crevasses – wedge-shaped fractures in ice – had significantly increased in size and depth at the ice sheet’s fast-flowing edges over the entire Greenland Ice Sheet between 2016 and 2021.

Omega-3s Can Slow Down Aging Process

In addition to the well-documented health benefits, a recent evaluation of the DO-HEALTH study indicates that the intake of omega-3 fatty acids can also slow down the ageing process.
Photo Credit: Polina Tankilevitch

A daily intake of one gram of omega-3s can slow down biological aging by up to four months, according to an analysis of clinical data from the international DO-HEALTH study led by the University of Zurich. For the first time, epigenetic clocks were used to measure the aging process.

Many people would like to delay or even stop the aging process. Previous clinical studies have shown that a reduced calorie intake can slow down the aging process in humans. Taking vitamin D or omega-3 fatty acids has also shown promising results in slowing biological aging in animals. However, it was unclear whether these measures would also work in humans.

The therapies previously tested in the DO-HEALTH study led by Heike Bischoff-Ferrari are also associated with a slowing of the aging process. These showed that vitamin D and omega-3 fatty acids, as well as regular physical activity, reduce the risk of infections and falls, and prevent cancer and premature frailty. “These results inspired us to measure the direct influence of these three therapies on the biological aging process in the Swiss DO-HEALTH participants,” says Bischoff-Ferrari, professor of geriatrics and geriatric medicine at the University of Zurich.

Featured Article

Videos with Cold Symptoms Activate Brain Regions and Trigger Immune Response

 Study on Brain Activity and Antibody Concentration Photo Credit:  Andrea Piacquadio People who watch videos of sneezing or sick people show...

Top Viewed Articles