![]() |
Image Credit: Scientific Frontline |
What if a solar storm a thousand times stronger than any recorded hit Earth today? Imagine a surge of energy from the cosmos so powerful that it leaves its mark not only on our atmosphere but also etched into the very rings of ancient trees. This is the captivating reality of a Miyake event, a cosmic radiation burst that has intrigued scientists since its discovery in 2012. Named after Japanese physicist Fusa Miyake, these events offer a unique window into the dynamic interplay between our planet and the universe, while simultaneously raising concerns about the potential impact such events could have on our technologically reliant world.
What are Miyake Events?
Miyake events are distinguished by a dramatic increase in the production of cosmogenic isotopes, particularly carbon-14, within Earth's atmosphere. This surge in carbon-14 is detectable in tree rings, ice cores, and other natural records like sediment layers and cave formations, providing a historical record of these events1. The leading hypothesis suggests that extreme solar events, such as powerful solar flares or coronal mass ejections (CMEs), are the primary trigger for these events. These solar eruptions unleash massive quantities of high-energy particles that interact with Earth's atmosphere, leading to the increased production of carbon-14 and other cosmogenic isotopes like beryllium-10 and chlorine-362. Interestingly, Miyake events are potentially linked to superflares observed on distant stars similar to our Sun, suggesting a broader astronomical context for these powerful phenomena.