. Scientific Frontline: Medical
Showing posts with label Medical. Show all posts
Showing posts with label Medical. Show all posts

Saturday, January 31, 2026

Immunotherapy reduces plaque in arteries of mice

An immunotherapy reduces plaque in the arteries of mice, offering a potential new strategy to treat cardiovascular disease, according to a study led by WashU Medicine researchers. An artery from an untreated mouse (top) shows more plaque (orange) than that of a mouse treated with the antibody-based immunotherapy (bottom).
Image Credit: Junedh Amrute/WashU Medicine

Scientific Frontline: "At a Glance" Summary

  • Main Discovery: An antibody-based immunotherapy successfully reduced atherosclerotic plaque volume and inflammation in murine models, demonstrating a novel ability to clear existing arterial obstructions rather than simply preventing new growth.
  • Methodology: Researchers utilized single-cell profiling on human coronary arteries to identify "modulated smooth muscle cells" expressing fibroblast activation protein (FAP). They then engineered a bispecific T cell engager (BiTE) molecule to specifically target these FAP-expressing cells, directing the host immune system to destroy them.
  • Key Data: The study analyzed over 150,000 cells from 27 human coronary arteries to isolate the specific molecular targets. In mouse models, the administration of the BiTE therapy significantly decreased total plaque burden and improved plaque stability compared to untreated controls.
  • Significance: Unlike standard statin therapies that primarily prevent disease progression by lowering cholesterol, this approach actively eliminates established plaque and associated inflammatory cells, potentially offering a solution for patients who remain at high risk of heart attack despite controlled lipid levels.
  • Future Application: This technology supports the development of precision medicine for advanced coronary artery disease and enables the use of PET/CT imaging tracers to distinguish between stable and unstable, rupture-prone plaques in clinical settings.
  • Branch of Science: Cardiology and Immunology
  • Additional Detail: The targeted modulated smooth muscle cells are functionally distinct from healthy structural cells, as they migrate to artery walls and secrete signals that recruit inflammatory immune cells, directly driving lesion instability.

Wednesday, January 28, 2026

Foundations for type 1 diabetes may already be laid during pregnancy

Image Credit: Scientific Frontline

Scientific Frontline: "At a Glance" Summary

  • Main Discovery: Patterns of inflammation and altered protein levels predictive of Type 1 Diabetes (T1D) are detectable at birth, indicating that the disease process may initiate during fetal development rather than commencing solely with the appearance of autoantibodies later in childhood.
  • Methodology: Researchers analyzed cord blood samples from the All Babies in Southeast Sweden (ABIS) cohort, utilizing Olink proteomic analysis to compare 146 children who subsequently developed T1D against 286 matched controls.
  • Key Data: A machine learning model based on a specific subset of proteins predicted T1D development with high accuracy (AUC = 0.89 ± 0.02), identifying risk years before the mean diagnosis age of 12.6 years.
  • Significance: This finding shifts the understanding of T1D etiology by pinpointing a "pre-autoimmune" phase involving innate immunity and tissue remodeling pathways that are perturbed prenatally, independent of standard genetic risk factors.
  • Future Application: The identification of these biomarkers offers a potential non-invasive screening method to detect high-risk infants immediately at birth, creating a new therapeutic window for primary prevention before beta-cell destruction begins.
  • Branch of Science: Immunology and Proteomics.
  • Additional Detail: The study linked these early protein alterations to specific environmental exposures, including perfluorinated substances (PFOS) and metabolic markers like stearic acid, suggesting environmental factors during pregnancy drive these early immune perturbations.

Tuesday, January 27, 2026

Low-cost system turns smartphones into emergency radiation detectors

Setup of the portable scanning system: a smartphone positioned above an LED-lit chamber for consistent film image capture.
Image Credit: Bantan et al., 2026, Radiation Measurements
(CC BY-NC-ND 4.0)

Scientific Frontline: Extended "At a Glance" Summary

The Core Concept: A low-cost, portable system that combines a smartphone, a battery-powered light box, and radiochromic film to provide immediate, on-site measurement of radiation exposure during emergencies.

Key Distinction/Mechanism: Unlike traditional dosimetry which requires expensive laboratory equipment, this system uses Gafchromic EBT4 film that changes color instantly upon exposure to radiation. The film is placed in a portable LED-lit scanner, and a smartphone camera captures an image; the cyan color channel intensity is then analyzed to quantify the radiation dose.

Origin/History: Published in Radiation Measurements in January 2026 (online date suggested by access context) or late 2025 (DOI reference), developed by Hassna Bantan and Professor Hiroshi Yasuda at Hiroshima University's Research Institute for Radiation Biology and Medicine.

Major Frameworks/Components:

  • Gafchromic EBT4 Film: A specialized film that visually indicates radiation exposure through color change.
  • Portable Scanner: A foldable, battery-powered LED chamber used to backlight the film for consistent imaging.
  • Smartphone Image Processing: Utilization of consumer smartphone cameras (e.g., Samsung, iPhone) to capture the film's color change, focusing on cyan channel data for analysis.

Branch of Science: Radiation Physics, Health Physics, and Emergency Medicine.

Future Application: Personal radiation preparedness for mass-casualty events, allowing individuals to perform voluntary on-site dose assessments in areas with damaged infrastructure or limited access to professional medical equipment.

Why It Matters: Provides a universal, cost-effective (under USD $70) solution for rapid triage and medical decision-making following nuclear or radiological incidents, potentially saving lives by identifying high-dose exposures (up to 10 Gray) quickly.

Monday, January 26, 2026

AI-powered model advances treatment planning for patients with spinal metastasis

Image Credit: Scientific Frontline / AI generated (Gemini)

Scientific Frontline: "At a Glance" Summary

  • Main Discovery: Researchers developed a machine learning-based prognostic scoring system for spinal metastasis that accurately predicts one-year survival using modern clinical data.
  • Methodology: The team employed Least Absolute Shrinkage and Selection Operator (LASSO) logistic regression to analyze prospective data from 401 patients undergoing surgery at 35 medical institutions.
  • Key Data: The model demonstrated high accuracy with an AUROC of 0.762, distinguishing one-year survival rates between low-risk (82.2%), intermediate-risk (67.2%), and high-risk (34.2%) groups.
  • Significance: This tool resolves the limitations of traditional scoring systems based on obsolete 1990s data by integrating outcomes from contemporary treatments like molecularly targeted therapies and immunotherapies.
  • Future Application: Clinical deployment to guide surgical versus palliative care decisions, with ongoing plans to validate the model's efficacy using international datasets.
  • Branch of Science: Orthopedics, Oncology, and Data Science
  • Additional Detail: Prognostic stratification relies on five non-invasive variables: vitality index, age, performance status, bone metastasis presence, and preoperative opioid usage.

Sunday, January 25, 2026

Researchers Uncover Potential Pathway To Address Williams-Beuren Syndrome

Daniel Greif, MD, professor of medicine (cardiovascular medicine) and genetics
Photo Credit: Courtesy of Yale School of Medicine

Scientific Frontline: Extended "At a Glance" Summary

  • The Core Concept: Researchers have identified sphingosine kinase 1 as a critical enzyme that drives the excess growth of smooth muscle cells, a primary cause of life-threatening arterial blockages in patients with Williams-Beuren syndrome.
  • Key Distinction/Mechanism: While Williams-Beuren syndrome is caused by a genetic elastin deficiency, this specific enzyme acts as an early "on switch" for the disease's complications. Unlike previously identified markers (such as NOTCH3) that appear later in the disease progression, sphingosine kinase 1 initiates the smooth muscle proliferation that leads to supravalvular aortic stenosis (narrowing of the aorta).
  • Origin/History: The findings were published in Nature Cardiovascular Research on January 22, 2026, by a team led by Dr. Daniel Greif at the Yale School of Medicine.
  • Major Frameworks/Components:
    • Elastin Deficiency: The underlying genetic mutation preventing blood vessels from recoiling properly.
    • Sphingosine Kinase 1: The newly identified enzyme target responsible for cell overgrowth.
    • Smooth Muscle Proliferation: The biological process causing arterial narrowing.
    • Supravalvular Aortic Stenosis: The specific cardiovascular condition resulting from the syndrome.
  • Branch of Science: Cardiovascular Medicine, Genetics, and Cell Biology.
  • Future Application: The immediate goal is developing pharmaceutical treatments to inhibit this enzyme, offering a non-surgical option for Williams-Beuren patients. Broader applications may include treating other conditions defined by excess smooth muscle, such as atherosclerosis, pulmonary hypertension, and coronary artery restenosis.
  • Why It Matters: Currently, there are no pharmacological treatments for Williams-Beuren syndrome; high-risk surgery is the only option. Identifying this early-stage enzymatic trigger provides the first viable pathway for creating a drug that could prevent or reverse the lethal cardiovascular complications of the disease.

Researchers find differences between two causes of heart valve narrowing

UC Irvine’s Arash Kheradvar (left) and Gregg Pressman of Jefferson Health and their teams collaborated on a project to underscore differences in two prevalent forms of mitral valve stenosis in the heart. The research will help improve the diagnosis and treatment of the heart condition that impacts as much as 15 percent of the population.
Photo Credit: Arash Kheradvar / UC Irvine

Scientific Frontline: "At a Glance" Summary

  • Main Discovery: Researchers identified fundamental structural and hemodynamic differences between mitral annular calcification (MAC)-related stenosis and rheumatic mitral stenosis, proving they are distinct pathological entities.
  • Methodology: Investigators conducted a two-phase study involving 3D transesophageal echocardiography analysis of 70 patients and the creation of patient-specific 3D-printed silicone valve models for testing in a heart flow simulator.
  • Key Data: MAC-related stenosis patients exhibited smaller valve volumes, apically displaced hinge points, and higher kinetic energy loss compared to rheumatic patients, despite often possessing a relatively larger geometric orifice area.
  • Significance: The findings reveal that current diagnostic standards based on rheumatic disease frequently underestimate the severity of MAC-related obstruction, potentially leading to inadequate clinical decision-making.
  • Future Application: This research facilitates the development of disease-specific diagnostic criteria and informs the design of transcatheter and surgical therapies specifically tailored for calcification-driven valve anatomy.
  • Branch of Science: Cardiovascular Medicine, Biomedical Engineering, and Radiological Sciences.
  • Additional Detail: Mitral annular calcification affects approximately 8 to 15 percent of the general population and serves as a significant marker for broader cardiovascular risks, including stroke and increased mortality.

Friday, January 23, 2026

Wood burning in homes drives dangerous air pollution in winter

Northwestern research has found that residential wood burning accounts for more than one-fifth of Americans’ wintertime exposure to outdoor fine particulate matter, tiny airborne particles that can penetrate deep into the lungs and enter the bloodstream, where they are linked to increased risks of heart disease, lung disease and even premature death.
Photo Credit: Matias T

Scientific Frontline: Extended "At a Glance" Summary

The Core Concept: Residential wood burning is a dominant source of wintertime air pollution in the United States, accounting for more than one-fifth of winter exposure to outdoor fine particulate matter (PM2.5).

Key Distinction/Mechanism: While often viewed as a harmless tradition, wood smoke releases microscopic particles that penetrate deep into the lungs and bloodstream. Unlike continuous industrial emissions, this pollution is highly seasonal but creates "hotspots" of hazardous air quality that drift from suburban areas into densely populated urban centers.

Major Frameworks/Components:

  • National Emissions Inventory (NEI): Utilized EPA data to quantify emissions based on appliance types and housing surveys.
  • High-Resolution Atmospheric Modeling: Employed a 4km x 4km grid simulation to track pollution transport, chemistry, and accumulation across the continental U.S.
  • Comparative Analysis: Modeled air quality scenarios with and without wood-burning emissions to isolate their specific impact on public health.

Branch of Science: Atmospheric Science, Environmental Health, and Mechanical Engineering.

Future Application: The research supports policy shifts toward cleaner home-heating technologies (such as electric heat pumps) to replace wood stoves and fireplaces, potentially saving thousands of lives annually.

Why It Matters: The study links residential wood smoke to approximately 8,600 premature deaths per year in the U.S. It also highlights a critical environmental justice issue: people of color and urban residents bear a disproportionate health burden from this pollution despite burning less wood themselves.

Friday, January 16, 2026

Simple method can enable early detection and prevention of chronic kidney disease

Image Credit: Scientific Frontline

Scientific Frontline: Extended "At a Glance" Summary

The Core Concept: A novel screening methodology that utilizes population-based distribution charts for estimated glomerular filtration rate (eGFR) to identify subtle abnormalities in kidney function before they reach conventional diagnostic thresholds.

Key Distinction/Mechanism: Unlike standard binary diagnostic thresholds (e.g., eGFR < 60), this method functions similarly to pediatric growth charts. It assesses a patient's kidney function against age- and sex-specific population norms, flagging individuals who fall into lower percentiles (e.g., below the 25th percentile) as high-risk, even if their absolute eGFR values appear within the "normal" range.

Origin/History: Developed by researchers at Karolinska Institutet and published in Kidney International on January 16, 2026. The study analyzed data from over 1.1 million adults in Stockholm between 2006 and 2021.

Branch of Science: Nephrology and Clinical Epidemiology.

Wednesday, January 14, 2026

“Recipe book” for reprogramming immune cells

Filipe Pereira, professor of molecular medicine at Lund University
Photo Credit: Courtesy of Lund University

Scientific Frontline: "At a Glance" Summary

  • Main Discovery: Researchers at Lund University established a high-throughput screening platform and a library of over 400 immune-related transcription factors to decode the specific "recipes" required to reprogram accessible somatic cells into distinct immune cell identities.
  • Methodology: The study utilized unique DNA barcodes attached to each transcription factor, allowing the simultaneous tracking of thousands of combinatorial possibilities to determine which specific factor groups drive conversion to desired immune lineages.
  • Key Data: This four-year project successfully identified reprogramming protocols for six different immune cell types, including Natural Killer (NK) cells, which were previously impossible to generate through direct reprogramming.
  • Context: Prior to this breakthrough, the specific reprogramming factors had been mapped for only four of the human body's more than 70 distinct immune cell types, limiting the development of synthetic immunotherapies.
  • Significance: The platform enables the production of rare, patient-specific immune cells from abundant sources like skin fibroblasts, potentially expanding immunotherapy applications from cancer treatment to autoimmune diseases and regenerative medicine.

Tuesday, January 13, 2026

Plastic particles increase inflammation and cross barriers

Lukas Kenner, visiting professor, Department of Molecular Biology.
Photo Credit: Medizinische Universität Wien

Scientific Frontline: "At a Glance" Summary

  • Core Discovery: Micro- and nanoplastics (MNPs) exacerbate chronic inflammatory bowel diseases (IBD) and penetrate biological barriers to accumulate in vital organs beyond the gastrointestinal tract.
  • Methodology: Researchers utilized a mouse model of ulcerative colitis, orally administering polystyrene particles—a common plastic found in food packaging—to analyze molecular and histological interactions with the intestinal mucosa and immune system.
  • Mechanism of Action: MNP exposure triggers pro-inflammatory activation of macrophages and induces gut dysbiosis, characterized by a decrease in beneficial bacterial species and an increase in potentially harmful, pro-inflammatory microbes.
  • Data Point: Nanoplastic particles smaller than 0.0003 millimeters (0.3 micrometers) demonstrated the highest mobility, successfully traversing the intestinal barrier to deposit in the liver, kidneys, and bloodstream.
  • Contextual Findings: The uptake of MNPs into the intestinal mucosa is significantly intensified during active inflammatory states, suggesting a feedback loop where existing inflammation facilitates further plastic accumulation.
  • Primary Implication: MNPs are an underestimated environmental factor in the pathogenesis of chronic inflammatory diseases, highlighting an urgent need to evaluate the systemic health risks posed by the migration of the smallest particles into major organ systems.

Monday, January 12, 2026

One in four older Americans with dementia prescribed risky brain-altering drugs despite safety warnings

Photo Credit: Wikimedia Commons

Scientific Frontline: "At a Glance" Summary

  • Main Discovery: One in four Medicare beneficiaries with dementia is prescribed central nervous system (CNS)-active medications—such as sedatives and antipsychotics—despite clinical guidelines warning against their use due to risks of falls, confusion, and hospitalization.
  • Methodology: Researchers analyzed survey data from the Health and Retirement Study linked to Medicare fee-for-service claims from 2013 to 2021 to trace prescribing patterns of five drug classes across adults with normal cognition, cognitive impairment, and dementia.
  • Data Stratification: Prescribing prevalence was highest among the most vulnerable: 25% of patients with dementia and nearly 22% of those with cognitive impairment received these drugs, compared to 17% of older adults with normal cognition.
  • Specific Trends: While overall CNS-active prescriptions decreased from 20% to 16% over the study period (driven by declines in benzodiazepines and hypnotics), antipsychotic prescriptions conversely rose from 2.6% to 3.6%.
  • Clinical Validity: In 2021, over two-thirds of patients receiving these prescriptions lacked a documented clinical indication, suggesting a high volume of potentially inappropriate and harmful prescribing practices.
  • Significance: These findings highlight substantial opportunities to improve safety for cognitively impaired older adults, necessitating rigorous medication reviews by physicians to taper or discontinue inappropriate treatments.

Wednesday, January 7, 2026

Researchers uncover molecular roots of fibrosis or tissue scarring in inflammatory bowel disease

Spatial mapping of intestinal tissue from patients with Crohn's disease or ulcerative colitis (shown here) allowed the researchers to characterize the cell types (shown as different colored dots) involved in fibrosis. In this image, inflammation-associated fibroblasts that deposit scar tissue roughly align with the cellular niche displayed in royal blue.
Image Credit: Courtesy of the Xavier lab

When inflammation in the body goes unchecked, it can cause fibrosis, or tissue scarring that may lead to organ dysfunction or even failure. This can happen in conditions such as inflammatory bowel diseases (ulcerative colitis and Crohn’s disease), chronic viral infections, interstitial lung fibrosis, chronic autoimmune skin diseases such as scleroderma, and scars associated with heart disease. Patients have few options for treating fibrosis, but new research points to a molecular pathway that could open the door to future treatment possibilities.

In earlier work, a team led by researchers at the Broad Institute and Mass General Brigham discovered a key cell type underlying fibrosis in inflammatory bowel disease (IBD). Now, in a new study in Nature, the team has characterized the crosstalk between this and other types of cells that leads to fibrosis. Their work also points to a molecule, GLIS3, that regulates this cell-to-cell communication and hadn’t been linked to IBD before. The findings suggest that interrupting this cellular pathway could one day help prevent or reduce fibrosis in patients with IBD or other diseases marked by chronic inflammation such as lung disease. 

Cardiovascular risk score predicts multiple eye diseases

Routine heart health screening tool identifies people at higher risk for age-related macular degeneration, diabetic retinopathy, glaucoma, and other vision-threatening conditions
Image Credit: Scientific Frontline / AI generated

A new study from UCLA Health shows that a cardiovascular risk score already used routinely in primary care can predict who will develop serious eye diseases years later. Researchers found that people with higher cardiovascular risk scores were significantly more likely to develop conditions including age-related macular degeneration, diabetic retinopathy, glaucoma, retinal vein occlusion, and hypertensive retinopathy. The study appears in Ophthalmology. 

Why it matters

Millions of Americans lose vision to eye diseases that often go undetected until significant damage has occurred. Early identification of at-risk individuals could enable timely screening and preventive interventions before irreversible vision loss occurs. This study demonstrates that information already collected during routine doctor visits could help identify patients who would benefit from earlier eye exams, potentially preventing blindness in high-risk individuals. The findings offer a practical way to improve eye disease prevention without requiring additional testing or specialized equipment in primary care settings.

Ticking time bomb: Some farmers report as many as 70 tick encounters over a 6-month period

Some outdoor workers reported as many as 70 tick encounters over a 6-month period, according to new research led by Binghamton's Tick-borne Disease Center. Image Credit:
Photo Credit: Pablo Tapia Ossa
(CC BY-NC 4.0)

Finding one tick on your body is scary enough – tick-borne diseases are serious – but what if you found more than 10 on yourself in just one month? That’s the plight of some farmers as the threat of ticks and tick-borne diseases grows, according to new research featuring experts at Binghamton University, State University of New York.

New research led by Mandy Roome, associate director of the Tick-borne Disease Center at Binghamton University, State University of New York, reveals that farmers and outdoor workers in the Northeast are facing an escalating threat of tick-borne diseases, which could be devastating to their livelihoods.

Ticks are surging and spreading throughout the United States, causing alarm for all who fall within their path, especially those in the Northeast. Farmers, who spend a substantial amount of time outdoors, in habitats ideal for ticks, face an even greater threat.

Monday, December 15, 2025

Fine particles in pollution are associated with early signs of autoimmune disease

Photo Credit: Chris LeBoutillier

A new study has linked air pollution exposure and immune-system changes that often precede the onset of autoimmune diseases. 

McGill University researchers analyzing Ontario data found that fine particles in air pollution are associated with higher levels of a biomarker linked with autoimmune diseases, such as systemic lupus. 

“These results point us in a new direction for understanding how air pollution might trigger immune system changes that are associated with autoimmune disease,” said Dr. Sasha Bernatsky, a James McGill Professor of Medicine and member of the McGill Centre for Climate Change and Health, the Division of Rheumatology and the Centre for Outcome Research and Evaluation. “We know some genetic factors play a role in autoimmune disease, but they don’t tell the whole story.” 

Lowering blood sugar cuts heart attack risk in people with prediabetes

Lowering blood sugar levels halves the likelihood of serious heart problems in people with prediabetes.
Photo Credit: isens usa

According to King’s College London research, published in The Lancet Diabetes & Endocrinology, bringing blood glucose back to normal levels - effectively reversing prediabetes - cuts the risk of death from heart disease or hospital admission for heart failure by more than 50%. 

This finding is especially important considering recent research showing that lifestyle changes alone - including exercise, weight loss and dietary improvements - do not lower cardiovascular risk in people with prediabetes. 

Together, these discoveries present a new, life-saving target for prediabetes and the prevention of cardiovascular disease; while potentially signaling a paradigm change for the way these conditions are treated by clinicians. 

Tuesday, December 9, 2025

Research proves life-saving frozen blood platelets safe to use

A bag of platelets being prepared for freezing.
Photo Credit: Australian Red Cross Lifeblood

Research has proven frozen blood platelets are safe and effective to use on critically injured patients – a breakthrough dramatically extending their shelf life for transfusions from one week to two years. 

The results of the decade-long University of Queensland and Australian Red Cross Lifeblood research collaboration will have positive implications for the international management of blood supplies and could save lives in remote areas and war zones. 

In a clinical trial with cardiac surgery patients, Director of UQ’s Greater Brisbane Clinical School Professor Michael Reade used platelets that had been frozen at -80 degrees Celsius and found they were only slightly less effective than liquid platelets and still stopped blood loss. 

Tuesday, December 2, 2025

Contraceptive pills may affect women's mental health

Photo Credit: Reproductive Health Supplies Coalition

The contraceptive pill has been hailed as one of the most revolutionary health technologies of the 20th century – a tool that gave women control over their fertility and paved the way for education and careers. But a new study suggests that this freedom may have come at a hidden cost: impaired mental health. 

Access to the contraceptive pill during adolescence is associated with an increased risk of depression later in life. Women who are genetically predisposed to mental illness are particularly at risk of suffering from this side effect. 

This is shown by a new study from the University of Copenhagen, which builds on previous research from the same university – and demonstrated links between hormonal contraceptives and mental health problems. 

‘We know that the contraceptive pill has had enormous societal consequences and positively affected women’s careers. But we have overlooked the fact that it can also have a negative impact on mental health – and that has implications for how we understand its overall effect,’ says the researcher behind the study, Franziska Valder, assistant professor at the Department of Economics and CEBI. 

Monday, December 1, 2025

Medical Science: In-Depth Description

Image Credit: Scientific Frontline / AI generated

Medical Science is the comprehensive discipline responsible for the maintenance of health and the prevention, diagnosis, and treatment of disease. It encompasses a vast spectrum of knowledge, ranging from the molecular interactions of genetics and biochemistry to the complex physiological systems of the human body. The primary goal of medical science is to understand the etiology (cause) and pathogenesis (development) of illnesses to develop effective therapeutic interventions and public health strategies.

Tuesday, November 25, 2025

Laparoscopic surgery significantly reduces blood loss and improves jaundice recovery for severe newborn liver disease

Pediatric surgery ward at Nagoya University Hospital, where laparoscopic surgery for biliary atresia is performed.
Photo Credit: Merle Naidoo, Nagoya University

Biliary atresia affects newborns when bile ducts become blocked, leading to liver damage that often requires transplants—a new study evaluates an alternative to traditional open surgery.

Nagoya University researchers and their collaborators have found that minimally invasive laparoscopic surgery significantly reduces blood loss and improves jaundice recovery compared to traditional open surgery for treating biliary atresia—a serious liver condition in newborns. The study, published in Hepatobiliary Surgery and Nutrition, also found that high-dose steroid therapy after surgery does not necessarily improve outcomes for treating this condition.

Biliary atresia affects 1 in 15,000 newborns and is the leading cause of liver transplants in children. It occurs when bile ducts become blocked or do not develop properly, which prevents effective liver function and leads to progressive damage. What causes this blockage is unknown, and surgery is usually performed within the first two to three months of birth when the condition is diagnosed. 

Featured Article

What Is: Cosmic Event Horizon

The Final Boundary An illustration of the Cosmic Event Horizon. Unlike the Observable Universe, which is defined by light that has reached u...

Top Viewed Articles