. Scientific Frontline: Neuroscience
Showing posts with label Neuroscience. Show all posts
Showing posts with label Neuroscience. Show all posts

Wednesday, October 15, 2025

Why women's brains face higher risk: scientists pinpoint X-chromosome gene behind MS and Alzheimer's

Image Credit: Scientific Frontline / AI generated

New research by UCLA Health has identified a sex-chromosome linked gene that drives inflammation in the female brain, offering insight into why women are disproportionately affected by conditions such as Alzheimer’s disease and multiple sclerosis as well as offering a potential target for intervention. 

The study published in the journal Science Translational Medicine, used a mouse model of multiple sclerosis to identify a gene on the X chromosome that drives inflammation in brain immune cells, known as microglia. Because females have two X chromosomes, as opposed to only one in males, they get a “double dose” of inflammation, which plays a major role in aging, Alzheimer’s disease and multiple sclerosis.  

When the gene, known as Kdm6a, and its associated protein were deactivated, the multiple sclerosis-like disease and neuropathology were both ameliorated with high significance in female mice.  

A promising target for multiple sclerosis

The image depicts a neuron with its axon insulated by segments of the myelin sheath. The visible degradation and fragmentation of that sheath represent the demyelination process that is characteristic of multiple sclerosis. This process disrupts the neuron's ability to transmit signals efficiently, leading to the neurological symptoms associated with the condition.
Image Credit: Scientific Frontline / AI generated

A team from UNIGE and HUG has discovered a subgroup of immune cells particularly involved in the disease, paving the way for more precise treatments and avoiding certain side effects.

Multiple sclerosis, which affects around one in 500 people in Switzerland, is an autoimmune disease in which immune cells attack the central nervous system, causing irreversible damage. Current treatments involve blocking the immune system to prevent it from attacking the body. Although effective, these drugs can trigger potentially serious infections. A team from the University of Geneva (UNIGE) and Geneva University Hospitals (HUG), in collaboration with the University of Pennsylvania, has identified a subtype of immune cells in newly diagnosed patients that may have a decisive role in disease progression.  A treatment targeting these cells specifically could effectively control the disease while avoiding certain side effects. These findings have been published in the journal Annals of Neurology.

Tuesday, October 14, 2025

New advances to boost regeneration and plasticity of brain neurons

The study is led by Professor Daniel Tornero and researcher Alba Ortega , from the Faculty of Medicine and Health Sciences and the Institute of Neurosciences of the University of Barcelona
Photo Credit: Courtesy of University of Barcelona

The brain’s mechanisms for repairing injuries caused by trauma or degenerative diseases are not yet known in detail. Now, a study by the University of Barcelona describes a new strategy based on stem cell therapy that could enhance neuronal regeneration and neuroplasticity when this vital organ is damaged. The results reveal that the use of brain-derived neurotrophic factor (BDNF), combined with stem cell-based cell therapies, could help in the treatment of neurodegenerative diseases or brain injuries.

Combining cell therapy with BDNF production

BDNF is a protein that is synthesized mainly in the brain and plays a key role in neuronal development and synaptic plasticity. Several studies have described its potential to promote neuronal survival and growth, findings that are now extended by the new study.

“The findings indicate that BDNF can promote the maturation and increase the activity of neurons generated in the laboratory from donor skin cells. The skin cells must first be reprogrammed to become induced pluripotent stem cells (iPSCs), and then differentiated to obtain neuronal cultures,” says Daniel Tornero, from the UB’s Department of Biomedicine and the CIBER Area for the Neurodegenerative Diseases (CIBERNED).

In this way, the study combines cell therapy with the production of BDNF in the same cells. This study confirms the beneficial effects of this growth factor in neuronal cultures derived from human stem cells, the same cells that are used in cell therapy to treat, for example, stroke in animal models.

Saturday, October 11, 2025

New technique detects genetic mutations in brain tumors during surgery within just 25 minutes

During neurosurgery at Nagoya University Hospital
Photo Credit: Department of Neurosurgery, Graduate School of Medicine, Nagoya University

A research team in Japan has developed an innovative system that can accurately detect genetic mutations in the brain tumor within just 25 minutes. Genetic mutations are crucial markers for diagnosis of brain tumors.

Unlike conventional genetic analysis methods, which typically take one to two days to obtain results, this new system allows surgeons to identify genotyping of brain tumors and determine optimal resection margins during surgery.

The new system succeeded in detecting mutations in isocitrate dehydrogenase (IDH) and telomerase reverse transcriptase (TERT) promoters. These mutations are key markers for diagnosis of diffuse glioma—the most common type of brain tumor—which exhibit highly infiltrative nature. The findings were published in the journal Neuro-Oncology.

New Insights into the Molecular Basis of Ataxia

The Bochum researchers Pauline Bohne (left) and Melanie Mark
Photo Credit: © RUB, Kramer

People with ataxia often experience stress-induced motor incoordination. Researchers have now discovered which receptor is responsible for this.

Researchers at Ruhr University Bochum, Germany, identified a receptor that plays a crucial role in stress-induced motor incoordination associated with ataxias. These hereditary motor disorders have long been linked to the neurotransmitter norepinephrine. The team, led by Dr. Pauline Bohne and Professor Melanie Mark from the Behavioral Neurobiology Working Group in Bochum, has now shown that the α1D norepinephrine receptor in the cerebellum is responsible for the symptoms. The team reports on these findings in the journal Cellular and Molecular Life Sciences.

Study reveals genetic link between childhood brain disorder and Parkinson's disease in adults

Image Credit: Dmitriy Kievskiy

Errors in a gene known to cause a serious neurodevelopmental condition in infants are also linked to the development of Parkinson’s disease in adolescence and adulthood, according to new research

The study, published in the Annals of Neurology, looked at a gene called EPG5. Errors in this gene are already known to cause Vici syndrome – a rare and severe inherited neurodevelopmental condition that presents early in life and affects multiple organ systems. Now researchers at King’s College London, University College London (UCL), the University of Cologne and the Max Planck Institute for Biology of Ageing have found that errors in the same gene are linked to changes in nerve cells that lead to more common age-related conditions like Parkinson’s disease and dementia.

Thursday, October 9, 2025

Patient Treatment Shows: Brain Pacemaker Helps with Stuttering

The position of the implanted electrodes in the patient’s basal ganglia.
Image Credit: Kell et al., J Fluency Dis 2025

Deep brain stimulation, a method where specific brain regions are activated using implanted electrodes, is a well-established approach for treating movement disorders such as Parkinson’s disease. Researchers led by Christian Kell from Frankfurt University Medicine as well as Nils Warneke and Katrin Neumann from Münster University Hospital have now successfully alleviated severe stuttering in a person with developmental stuttering using this method for the first time. The researchers are now preparing a study to test the therapy on additional individuals who experience severe stuttering.

While stuttering was believed to have purely psychological causes up until about 30 years ago, scientists today attribute it to a variety of factors capable of contributing to its development. For instance, several genes have been identified that increase the risk of stuttering, and anatomically, the brains of individuals with speech flow disorders show differences in neural connections and brain activity compared to those who speak fluently. 

Wednesday, October 8, 2025

Researchers discover enlarged areas of the spinal cord in fish, previously found only in four-limbed vertebrates

Zebrafish at the Laboratory of Fish Biology in Nagoya University Researchers discovered that zebrafish have enlarged areas of the spinal cord, previously believed to exist only in four-limbed vertebrates.
 Photo Credit: Naoyuki Yamamoto

Four-limbed vertebrates, known as tetrapods, have two enlarged areas in their spinal cords. The two enlargements have a correlation with the forelimbs and hind limbs, respectively. These enlargements are thought to be caused by the complex muscular system and the rich sensory networks supplying nerves to the limbs.

Meanwhile, it was long thought that fish had no enlarged areas in their spinal cords due to the absence of limbs. However, a recent study by scientists from Nagoya University in Japan has revealed that zebrafish, in fact, have enlarged areas in their spinal cords, although these areas are not visible to the naked eye.

"We thought that fish also have spinal enlargements because they have paired pectoral and pelvic fins, which correspond to forelimbs and hind limbs in tetrapods, respectively," said  Naoyuki Yamamoto, a professor at Nagoya University's Graduate School of Bioagricultural Sciences and the lead author of the study.

Tiny worms reveal big secrets about memory

Caenorhabditis elegans
Image Credit: Chew Lab

In a discovery that could reshape how we think about memory, researchers at Flinders University have found that forgetting is not just a glitch in the brain but is actually a finely tuned process, and dopamine is the key.

Led by neuroscientist Dr Yee Lian Chew and PhD student Anna McMillen, from Flinders Health and Medical Research Institute (FHMRI), the research team has shown that the brain actively forgets using the same chemical that helps us learn, dopamine.

Published in the Journal of Neurochemistry, the study used tiny worms called Caenorhabditis elegans – one millimetre long with only 300 neurons, yet 80% genetically identical to humans – to explore how memories fade.

These microscopic creatures might seem worlds apart from humans, but their brains share many of the same molecular pathways that makes them perfect for studying brain pathways including memory.

Wednesday, October 1, 2025

Fat particles could be key to treating metabolic brain disorders

For decades, it was widely accepted that neurons relied exclusively on glucose to fuel their functions in the brain. This is not the case.
Photo Credit: The University of Queensland

Evidence challenging the long-held assumption that neuronal function in the brain is solely powered by sugars has given researchers new hope of treating debilitating brain disorders.

A University of Queensland study led by Dr Merja Joensuu showed that neurons also use fats for fuel as they fire off the signals for human thought and movement.

“For decades, it was widely accepted that neurons relied exclusively on glucose to fuel their functions in the brain,” Dr Joensuu said.

“But our research shows fats are undoubtedly a crucial part of the neuron’s energy metabolism in the brain and could be a key to repairing and restoring function when it breaks down.”

Dr Joensuu from the Australian Institute for Bioengineering and Nanotechnology along with lab members PhD candidate Nyakuoy Yak and Dr Saber Abd Elkader from UQ’s Queensland Brain Institute set out to examine the relationship of a particular gene (DDHD2) to hereditary spastic paraplegia 54 (HSP54).

Tuesday, September 30, 2025

Study finds altering one brain area could rid alcohol withdrawal symptoms

David Rossi, left, an associate professor in the Integrative Physiology and Neuroscience Department in WSU's College of Veterinary Medicine, poses for a photo with Nadia McLean, right, a PhD student in Neuroscience, outside their lab in Pullman. Rossi and McLean are researching ways to curb the debilitating symptoms of alcohol withdrawal
Photo Credit: Ted S. Warren, College of Veterinary Medicine

By targeting a specific area of the brain, researchers at Washington State University may now hold the key to curbing the debilitating symptoms of alcohol withdrawal that push many people back to drinking.

The new study found the answer to helping people get through alcohol withdrawal may lie in a region of the brain known as the cerebellum. In mice experiencing withdrawal, scientists were able to ease the physical and emotional symptoms by altering brain function in this brain region using both genetic tools and a specialized compound. The findings, published in the journal Neuropharmacology, could help pave the way for targeted therapies that make recovery more manageable.

“Our research suggests the cerebellum could be a promising therapeutic target to help people get through the most difficult stage of alcohol use disorder,” said Nadia McLean, lead author and doctoral researcher in the Department of Integrative Physiology (IPN). “By targeting the cerebellum, we were able to ease both the physical motor discoordination and the emotional distress of withdrawal — the symptoms that so often drive people back to drinking.”

Saturday, September 27, 2025

What Is: Schizophrenia

 

Image Credit: Scientific Frontline

Beyond the Misconceptions

Schizophrenia is one of the most misunderstood mental health conditions. It is not, as commonly portrayed, a "split personality" (that is a separate, rare condition called dissociative identity disorder). Rather, schizophrenia is a chronic and severe mental disorder that affects how a person thinks, feels, and behaves. At its core, it is a disorder of cognition and reality testing, characterized by a "fracturing" of the mind's essential functions, leading to a disconnect from reality for the individual experiencing it.

Globally, schizophrenia affects approximately 24 million people, or 1 in 300 worldwide. It is a universal human illness that does not discriminate based on race, culture, or socioeconomic status.

Friday, September 26, 2025

Brain inflammation treatment could be ally in fight against dementia

Samira Aghlara-Fotovat
Photo Credit: Jeff Fitlow/Rice University

Scientists from Rice University and Houston Methodist have developed a new way to reduce inflammation in the brain, a discovery that could help fight diseases such as Alzheimer’s and Parkinson’s.

The team created “AstroCapsules,” small hydrogel capsules that enclose human astrocytes ⎯ star-shaped brain cells that support healthy nervous system function. Inside the capsules, the cells were engineered to release interleukin-1 receptor antagonist, an anti-inflammatory protein. Tests in human brain organoids and mouse models showed the treatment lowered neuroinflammation and resisted immune rejection.

Rice bioengineer Omid Veiseh, whose lab studies how to design biomaterials that work with the immune system, is co-corresponding author on the paper published in Biomaterials.

“Encapsulating cells in a way that shields them from immune attack has been a central challenge in the field,” said Veiseh, professor of bioengineering at Rice, Cancer Prevention and Research Institute of Texas Scholar and director of the Rice Biotech Launch Pad. “In our lab, we have been working on biomaterials for many years, and this project was an opportunity to draw from that experience to address the uniquely complex immune environment of the brain. Our hope is that this work will help move cell therapies closer to becoming real treatment options for patients with neurodegenerative disease.”

Thursday, September 25, 2025

Does isolated REM sleep behavior disorder predict Parkinson’s disease or dementia?

Image Credit: Gerd Altmann

An international research team led by Université de Montréal medical professor Shady Rahayel has made a major breakthrough in predicting neurodegenerative diseases. 

Thanks to two complementary UdeM studies, scientists are now able to determine, years in advance, which individuals with a particular sleep disorder will develop Parkinson’s disease or dementia with Lewy bodies (DLB). 

The studies focus on isolated REM sleep behavior disorder (iRBD)—a condition in which people yell, thrash, or act out their dreams, sometimes violently enough to injure a bed partner. 

“It’s not just restless sleep—it’s a neurological warning sign,” said Rahayel, a neuropsychologist and researcher at the Centre for Advanced Research in Sleep Medicine at Sacré-Cœur Hospital in Montreal. 

Roughly 90 per cent of people with this sleep disorder will go on to eventually develop Parkinson’s disease or DLB. Until now, however, it was impossible to know which disease would occur—or when. 

Childhood concussions may trigger long-term brain changes

Researchers call for extended care and monitoring after pediatric head injuries
Image Credit: Gemini AI

A new study in mice reports that concussions sustained early in life can cause subtle brain changes that re-emerge later in life. The findings, published in Experimental Neurology, may have significant implications for understanding the long-term impact of head injuries in children.

Led by Andre Obenaus, a professor of biomedical sciences at UC Riverside’s School of Medicine, the study used advanced brain imaging techniques to identify initial signs of injury that appeared to resolve, only to return months later as more severe white matter damage.

Obenaus explained that a single concussion in early life can lead to lasting changes in white matter — the fibers in your brain that serve as communication pathways — potentially altering brain structure and function throughout an individual’s lifetime. The findings highlight the need for ongoing monitoring and care following head injuries in children, he said.

“We’ve known that white matter is vulnerable after traumatic brain injury,” Obenaus said. “What’s been missing, however, is a comprehensive, long-term look at how a single juvenile concussion affects the brain over time. Our findings fill that gap and show that brain changes from early-life concussions may not be immediately obvious, but they can reappear and worsen over time.”

Wednesday, September 24, 2025

Astrocytes, the unexpected conductors of brain networks

 

Dozens of synapses from distinct neural circuits gather around a specialised astrocyte structure called a leaflet, which is capable of detecting and integrating the activities of multiple synapses.
Image Credit: © Lucas BENOIT et Rémi GRECO/ GIN

A collaborative study between the Universities of Lausanne (UNIL) and Geneva (UNIGE), the Grenoble Institute of Neuroscience (GIN) and the Wyss Centre for Bio and Neuroengineering reveals a previously unknown role for astrocytes in the brain's processing of information. Published in the journal Cell, their study shows that these glial cells are capable of integrating and processing signals from several neurons at once. Using cutting-edge imaging techniques, the team identified new specialised structures called leaflets, which enable astrocytes to connect several neurons, and thus neural networks. This represents a conceptual shift in our understanding of the brain.

The brain does not function via neurons alone. In fact, nearly half of the cells that make up the brain are glial cells, and among them, astrocytes occupy a special place. Their name comes from their star-shaped skeleton, but their external appearance is more reminiscent of certain nebular stars, with an irregular, filamentary contour that allows them to insert themselves into the smallest gaps between neurons, blood vessels, and other cells. They are thus in close contact with synapses, the communication hubs between neurons.

Tuesday, September 16, 2025

Stem Cells Repair Mouse Brains Post-Stroke

This image shows a coronal section through the mouse brain after stroke and neural stem cell transplantation. The dashed circle indicates the stroke area. The neurite projections of the transplanted human cells are stained in dark brown. Neurites extend locally into the cortex (CX) but also via the corpus callosum (CC) into the other brain hemisphere.
Image Credit: Universität Zürich

Stem cell transplantation can reverse stroke damage, researchers at the University of Zurich report. Its beneficial effects include regeneration of neurons and restoration of motor functions, marking a milestone in the treatment of brain disorders.

One in four adults suffer a stroke in their lifetime, leaving around half of them with residual damage such as paralysis or speech impairment because internal bleeding or a lack of oxygen supply kills brain cells irreversibly. No therapies currently exist to repair this kind of damage. “That’s why it is essential to pursue new therapeutic approaches to potential brain regeneration after diseases or accidents,” says Christian Tackenberg, the Scientific Head of Division in the Neurodegeneration Group at the University of Zurich (UZH) Institute for Regenerative Medicine.

Neural stem cells have the potential to regenerate brain tissue, as a team led by Tackenberg and postdoctoral researcher Rebecca Weber has now compellingly shown in two studies that were conducted in collaboration with a group headed by Ruslan Rust from the University of Southern California. “Our findings show that neural stem cells not only form new neurons, but also induce other regeneration processes,” Tackenberg says.

Tuesday, February 11, 2025

Mystery solved: New study reveals how DNA repair genes play a major role in Huntington's disease

Dr. Xiangdong William Yang
Photo Credit: Courtesy of UCLA/Health

A new UCLA Health study has discovered in mouse models that genes associated with repairing mismatched DNA are critical in eliciting damages to neurons that are most vulnerable in Huntington's disease and triggering downstream pathologies and motor impairment, shedding light on disease mechanisms and potential new ways to develop therapies. 

Huntington’s disease is one of the most common inherited neurodegenerative disorders that typically begins in adulthood and worsens over time. Patients begin to lose neurons in specific regions of the brain responsible for movement control, motor skill learning, language and cognitive function. Patients typically live 15 to 20 years after diagnosis with symptoms worsening over time. There is no known cure or therapy that alters the course of the disease.

The cause of Huntington's disease was discovered over three decades ago--a "genetic stutter" mutation involves repeats of three letters of the DNA, cytosine-adenine-guanine (CAG), in a gene called huntingtin. Healthy individuals usually have 35 or fewer CAG repeats, but people inherited with mutation of 40 or more repeats will develop the disease. The more CAG repeats a person inherits, the earlier the disease onset occurs. However, how the mutation causes the disease remains poorly understood. 

Opening for a new type of drug for Alzheimer’s Disease

Kaj Blennow and Tohidul Islam.
Photo Credit: Johan Wingborg

A complementary drug to combat Alzheimer’s disease could target a specific part of the nerve cell protein tau. This is the finding of research from the University of Gothenburg, which also offers a better way to measure the effect of treatment among patients.

Researchers from the University of Gothenburg, together with colleagues from the University of Pittsburgh in the US, published their findings in the journal Nature Medicine.

The study provides insights into what happens during the earliest phase when the protein tau is transformed into thread-like strands (fibrils) in the nerve cells. This is one of the processes in Alzheimer’s disease and occurs alongside the formation of amyloid plaques. In healthy individuals, the protein tau stabilizes the tubular building blocks (microtubules) that make up the long projections of the nerve cells.

During the development of Alzheimer’s disease, tau undergoes pathological changes. First, tau forms small, soluble aggregates that are secreted from the nerve cells and are thought to be able to spread these changes to other nerve cells. The protein is then converted into larger, harmful, thread-like strands in the nerve cells.

Monday, February 10, 2025

Study reveals reasons for misdiagnosis of frontotemporal dementia

Researchers have discovered patterns in the misdiagnosis of frontotemporal dementia
Photo Credit: Anna Shvets

University of Queensland researchers discovered that nearly 70 per cent of suspected frontotemporal dementia patients ultimately did not have the disease, in a study aimed at identifying factors that contribute to misdiagnosis of this notoriously difficult to diagnose disorder.

Psychiatrist Dr Joshua Flavell, working with cognitive neurologist Professor Peter Nestor at the Mater Hospital Memory and Cognitive Disorders clinic and UQ’s Queensland Brain Institute, analyzed data from 100 patients suspected of having frontotemporal dementia who had been referred by specialist physicians like neurologists, psychiatrists or geriatricians.

“Of the 100 patients, 34 were true-positive, and 66 were false-positive for frontotemporal dementia,” Dr Flavell said.

“We found that misinterpretation of brain scans, particularly nuclear imaging, led to 32 patients being incorrectly diagnosed.

Featured Article

Climate change may increase the spread of neurotoxin in the oceans

The researchers’ findings raise concerns about how climate change may affect the levels of methylmercury in fish and shellfish. Photo Credit...

Top Viewed Articles