 |
Wei Cheng |
In a viral infection, what’s the signal from the virus that alerts the immune system to produce protective neutralizing antibodies?
That’s a big question that scientists seek to answer when trying to understand disease or develop drugs to treat or vaccinate against COVID-19 and other viruses.
“The answer to this question is not simple,” said Wei Cheng, associate professor at the University of Michigan College of Pharmacy. “Most infectious viral agents identified to date are made of complex assemblies of proteins and nucleic acids, along with other constituents that are important for viral fitness and used by viruses to their advantage for replication and proliferation in the infected host.”
To that end, Cheng’s lab developed a simple, synthetic structure that mimics the surface of SARS-CoV-2, that when injected into mice, mounted a robust protective antibody response to SARS-CoV-2, without the need of any other disease fighting agents, called adjuvants. The findings appear in the journal Bioconjugate Chemistry and were featured as an ACS Editors’ Choice. Co-authors are Wei-Yun Wholey, senior staff member, and doctoral student Sekou-Tidiane Yoda.
“This question of what signals an immune response is important for rational design of vaccines and also important for understanding the early events in a viral infection that could be targeted for therapeutic intervention,” Cheng said. “What this result implies is that an ordered assembly of the viral entry protein is all that is needed to initiate an antiviral response. The detailed molecular mechanisms behind this phenomenon remain unclear, but this study made an interesting step forward in our understanding toward viral immunogenicity.”