The Omicron variant was first detected in Botswana in October 2021 and has quickly spread throughout the world Credit: Justice Hubane / Unsplash |
“We have seen SARS-CoV-2 generate three major variants — Alpha, Delta and Omicron — in about 16 months, which is very surprising because other viruses do not make such repeated big evolutionary leaps,” said Maciej Boni, associate professor of biology, Penn State, who led the recombination analysis for this global collaboration. “The latest variant — Omicron — is extraordinary because of the even bigger jump it made in the evolution of its spike protein.”
Boni noted that compared to previous variants, Omicron’s spike protein has more than 30 mutations, many of which are known to influence host antibody neutralization.
“Given that Omicron made such a big leap forward evolutionarily speaking, we wanted to investigate why and how this may have happened,” he said.
To do that, the team — which was led by the Centre for Epidemic Response and Innovation in South Africa — analyzed all 686 Omicron sequences that were available by Dec. 7, 2021. They found that Omicron falls within the B.1.1 lineage, which also includes the Alpha variant. Interestingly, the team found that Omicron is genetically distinct from Alpha, as well as any other known variants of interest.