A very long time ago, our Milky Way had a truly eventful life: between about 13 and 8 billion years ago, it lived hard and fast, merging with other galaxies and consuming a lot of hydrogen to form stars. With the help of a new data set, Maosheng Xiang and Hans-Walter Rix from the Max Planck Institute for Astronomy in Heidelberg have reconstructed the turbulent teenage years of our home galaxy. To do this, the researchers had to precisely determine the ages of 250,000 Milky Way stars.
Understanding the formation history and evolution of our home galaxy is a major goal for astronomy and astrophysics, and one where a flood of high-quality “big data” over the past years has led to impressive progress. The new study by Xiang and Rix constitutes a big step forward by putting much more precise dates onto the different phases of early Milky Way history. This was made possible by a unique analysis that managed to determine the ages of 250,000 stars.
A rough sketch of Milky Way history
In our current understanding, our home galaxy went through several phases. During the “baby phase” (not an official astronomy term), small, gas-rich progenitor galaxies merged to form a conglomerate that subsequently grew into our Milky Way. As those galaxies did not collide head-on, they imparted a spin on the resulting structure, presumably flattening its out into what we now see as the so-called thick disk of our Milky Way: gas and stars in a flat pancake, 100,000 light-years in diameter and 6000 light-years thick.