. Scientific Frontline

Friday, March 25, 2022

Molecular key may unlock new treatments for neurodegenerative disorders

Structure of SARM1 in complex with inhibitor.
Credit: Thomas Ve
Researchers have worked out how to successfully switch off a key pathway of nerve fiber breakdown in debilitating neurodegenerative disorders such as Parkinson’s disease, traumatic brain injury and glaucoma.

The study, led by Griffith University’s Institute for Glycomics and Disarm® Therapeutics, a wholly owned subsidiary of pharmaceutical company Eli Lilly, reveals the structural processes behind activation and inhibition of SARM1, a key molecule in the destruction of nerve fibers.

“As a trigger for nerve fiber degeneration, understanding how the enzyme SARM1 works may help us treat several neurodegenerative conditions,” said Dr Thomas Ve from the Institute for Glycomics.

“In this study we show the molecular interactions that can switch SARM1 on and off. This gives us a clear avenue for the design of new drug therapeutics.”

In neurodegenerative conditions like peripheral neuropathy, Parkinson’s disease, amyotrophic lateral sclerosis (ALS), traumatic brain injury and glaucoma, when the nerve fibers are damaged, SARM1 is activated.

“This sparks a cascade of molecular processes that leads to the self-destruction of the nerve cell’s axon, the cable that carries electric impulse away from the body of the nerve cell to the next,’’ Dr Ve said.

Missing buil­ding block for quan­tum optimi­zation develo­ped

From left to right: Kilian Ender, Clemens Dlaska, Wolfgang Lechner, Rick van Bijnen, Andreas Kruckenhauser, Glen Bigan Mbeng
Credit: Uni Innsbruck

Optimization challenges in logistics or finance are among the first possible applications of quantum machines. Physicists from Innsbruck, Austria, have now developed a method that enables optimization problems to be investigated on quantum hardware that already exists today. For this purpose, they have developed a special quantum gate.

The development of quantum computers is being pursued worldwide, and there are various concepts of how computing using the properties of the quantum world can be implemented. Many of these have already advanced experimentally into areas that can no longer be emulated on classical computers. But the technologies have not yet reached the point where they can be used to solve larger computational problems. Therefore, researchers are currently looking for applications that can be implemented on existing platforms. "We are looking for tasks that we can compute on existing hardware," says Rick van Bijnen of the Institute of Quantum Optics and Quantum Information at the Austrian Academy of Sciences in Innsbruck. A team around Van Bijnen and the Lechner research group is now proposing a method to solve optimization problems using neutral atoms.

Thursday, March 24, 2022

Can a poisonous sea snail replace morphine?


Bea Ramiro from Department of Biomedical Sciences at Copenhagen University began to study the sea snail species Conus rolani more or less by chance. Together with two fishermen she was collecting material in the waters off the Philippine Island of Cebu in 2018.

At the time, researchers knew that poison from the sea snail species Conus magus could be used as a painkiller. It can replace morphine and opioids, and some patients experience fewer side effects. Therefore, Bea Ramiro hoped she could find a new sea snail species whose poison had a similar or possibly even better effect.

In order to study sea snails, Bea Ramiro had to collect a lot of snails of the same species. And once the fishermen had reeled in the net and the snails had been divided into groups according to species, she only had enough snails of the species Conus rolani to do a proper study.

Today, Bea Ramiro is glad that this large, white and brown snail six to seven centimeters long was the only species left.

Because a new study from the University of Copenhagen published in Science Advances to which she has contributed shows that poison from Conus rolani can function as a painkiller. The researchers have learned that a particular substance from the poison can block out pain in mice for an even longer time than morphine.

Blow flies can be used to detect use of chemical weapons and other pollutants

Blow flies are common across many environments.
Photo by Fir0002/Flagstaffotos

Researchers at the School of Science at IUPUI have found that blow flies can be used as chemical sensors, with a particular focus on the detection of chemical warfare agents.

Despite widespread bans, chemical weapons have been deployed in recent conflicts such as the Syrian civil war, and some experts fear they may be used in the war in Ukraine. An IUPUI study shows that blow flies could be used as a safer alternative for investigating the use of these weapons -- as well as other chemicals in the environment -- keeping humans out of potentially dangerous situations.

The work appears in the journal Environmental Science and Technology. The research was funded through a contract from the U.S. Defense Advanced Research Projects Agency.

Straws, crystals and the quest for new subatomic physics

Several of the Mu2e tracker planes, featuring thin mylar straws, are assembled in a cleanroom at Fermilab. The full tracker will contain 21,600 straws to measure the paths, energies and momentums of electrons with high precision.
Photo: Ryan Postel, Fermilab

Scientists build complex machines to better understand the particles that make up our universe — and sometimes, they use materials you might not expect. One example? The upcoming Mu2e experiment at the U.S. Department of Energy’s Fermi National Accelerator Laboratory will incorporate thousands of straws made by a drinking straw company.

But these aren’t your average soda straws. Mu2e will use special mylar straws, with walls thinner than a human hair, to search for a never-before-seen transformation of subatomic particles called muons.

Teams from this international collaboration are currently constructing the Mu2e particle detector at Fermilab and aim to start taking physics data by 2026. If they find the rare, sought-after signal, it will be a sign of new physics beyond the tried and tested Standard Model of particle physics. It would help pave the way to answer open questions about the fundamental nature of elementary particles and forces that physicists have had for many years.

The wild years of our Milky Way galaxy

The architectural galaxy: our Milky Way consists of different components. Max Planck researchers have now reconstructed the history of thick and thin discs in particular.
Credit: Stefan Payne-Wardenaar / MPIA

A very long time ago, our Milky Way had a truly eventful life: between about 13 and 8 billion years ago, it lived hard and fast, merging with other galaxies and consuming a lot of hydrogen to form stars. With the help of a new data set, Maosheng Xiang and Hans-Walter Rix from the Max Planck Institute for Astronomy in Heidelberg have reconstructed the turbulent teenage years of our home galaxy. To do this, the researchers had to precisely determine the ages of 250,000 Milky Way stars.

Understanding the formation history and evolution of our home galaxy is a major goal for astronomy and astrophysics, and one where a flood of high-quality “big data” over the past years has led to impressive progress. The new study by Xiang and Rix constitutes a big step forward by putting much more precise dates onto the different phases of early Milky Way history. This was made possible by a unique analysis that managed to determine the ages of 250,000 stars.

A rough sketch of Milky Way history

In our current understanding, our home galaxy went through several phases. During the “baby phase” (not an official astronomy term), small, gas-rich progenitor galaxies merged to form a conglomerate that subsequently grew into our Milky Way. As those galaxies did not collide head-on, they imparted a spin on the resulting structure, presumably flattening its out into what we now see as the so-called thick disk of our Milky Way: gas and stars in a flat pancake, 100,000 light-years in diameter and 6000 light-years thick.

New X-Ray Technique Provides Novel Images of Triso Nuclear Fuel

Credit: Idaho National Laboratory

Advanced nuclear technologies could play an important role for nations seeking carbon-free energy solutions to reduce the impacts of climate change.

Companies around the world are developing advanced reactor designs to meet a range of needs, from microreactors for remote applications to large reactors that could power huge urban areas while also providing heat for industrial applications such as hydrogen production.

While these advanced reactors are a diverse bunch, they all benefit from both passive and inherent safety design features that use advanced materials to increase safety, reliability and performance.

One type of inherently safe technology, TRi-structural ISOtropic particle fuel (TRISO), consists of a kernel of uranium-based fuel surrounded by three layers of carbon- and ceramic-based materials chemically and structurally resistant to degradation in a reactor environment.

The resulting fuel particle is roughly the size of a poppy seed and can withstand temperatures of more than 3,000 degrees Fahrenheit, well beyond the threshold of current nuclear fuels, without melting or releasing significant quantities of fission products.

Research Says Docile Gecko is a Savage Scorpion Predator


SDSU researchers document geckos violently shaking from side to side to immobilize their scorpion prey.

When western banded geckos are hungry, they pounce on crickets, beetles, or other small arthropods in their environment, and quickly gobble them up.

But when they catch scorpions, they begin to shake themselves violently from side to side at high speeds, smashing their prey back and forth against the ground for several seconds until it is immobilized. After the fracas, the gecko devours the much smaller scorpion.

“It's a really kind of physically stunning behavior, something totally unexpected from a lizard like that,” said San Diego State University biologist Rulon Clark.

“They seem to be kind of body slamming the scorpions into the ground. If you ever see seals, they'll pick fish up and they'll slap them against the water. I think geckos are doing essentially the same thing, just blunt force trauma.” said Malachi Whitford (‘20), who studied the geckos’ unusual feeding behavior as a graduate student in the joint SDSU and University of California, Davis Ph.D. program in ecology. The University of California, Riverside, also participated in the research.

On Icy Enceladus, Expansion Cracks Let Inner Ocean Boil Out

Saturn's tiny, frozen moon Enceladus is slashed by four straight, parallel fissures or "tiger stripes" from which water erupts. These features are unlike anything else in the solar system. Researchers now have an explanation for them.
NASA/JPL/Space Science Institute image

In 2006, the Cassini spacecraft recorded geyser curtains shooting forth from “tiger stripe” fissures near the south pole of Saturn’s moon Enceladus — sometimes as much as 200 kilograms of water per second. A new study suggests how expanding ice during millennia-long cooling cycles could sometimes crack the moon’s icy shell and let its inner ocean out, providing a possible explanation for the geysers.

Enceladus has a diameter of about 504 kilometers (313 miles) — roughly the length of the United Kingdom at its longest point. The moon is covered in ice 20-30 kilometers (12.4-18.6 miles) thick, and the surface temperature is about -201 Celsius (-330 Fahrenheit), but a decade of data from NASA’s Cassini–Huygens mission supplied evidence for a deep liquid ocean inside the icy shell, escaping into space through continuous “cryo-volcanism”. How such a small, cold world can sustain so much geological activity has been an enduring scientific puzzle.

“It captivated both the scientists’ and the general public’s attention,” said Max Rudolph, an assistant professor in geophysics at the University of California, Davis, and lead author of the new study, published in Geophysical Research Letters.

New study of Yellowstone National Park shines new light on once hidden details of the famous American landmark

The SkyTEM instrument being flown over Old Faithful in Yellowstone National Park.
Photo by Jeff Hungerford, Yellowstone National Park; supplied by Carol Finn of U.S. Geological Survey.

The geysers and fumaroles of Yellowstone National Park are among the most iconic and popular geological features on our planet. Each year, millions of visitors travel to the park to marvel at the towering eruptions of Old Faithful, the bubbling mud cauldrons of Artists Paint Pots, the crystal-clear water and iridescent colors of Grand Prismatic Spring, and the stacked travertine terraces of Mammoth Hot Springs.

Those who have visited the park may have asked themselves, “Where does all the hot water come from?” A study published this week in Nature, co-authored by Virginia Tech’s W. Steven Holbrook and colleagues from the U.S. Geological Survey and Aarhus University in Denmark, provides stunning subsurface images that begin to answer that question.

The research team used geophysical data collected from a helicopter to create images of Yellowstone’s subsurface “plumbing” system. The method detects features with unusual electrical and magnetic properties indicative of hydrothermal alteration.

Featured Article

Discovery of unexpected collagen structure could ‘reshape biomedical research’

Jeffrey Hartgerink is a professor of chemistry and bioengineering at Rice. Photo Credit: Courtesy of Jeffrey Hartgerink / Rice University Co...

Top Viewed Articles