One cutting-edge cancer treatment exciting researchers today involves collecting and reprogramming a patient’s T cells – a special set of immune cells – then putting them back into the body ready to detect and destroy cancerous cells. Although effective for widespread blood cancers like leukemia, this method rarely succeeds at treating solid tumors.
Now, Stanford University engineers have developed a delivery method that enhances the “attack power” of the modified immune cells, called chimeric antigen receptor (CAR) T cells. Researchers add CAR-T cells and specialized signaling proteins to a hydrogel – a water-filled gel that has characteristics in common with biological tissues – and inject the substance next to a tumor. This gel provides a temporary environment inside the body where the immune cells multiply and activate in preparation to fight cancerous cells, according to a new study published April 8 in Science Advances. The gel acts like a leaky holding pen that pumps out activated CAR-T cells to continuously attack the tumor over time.
“A lot of the CAR-T cell field is focusing on how to make better cells themselves, but there is much less focus on how to make the cells more effective once in the body,” said Eric Appel, assistant professor of materials science and engineering at Stanford and senior author of the paper. “So, what we’re doing is totally complementary to all of the efforts to engineer better cells.”