A Cornell study describes a breakthrough in the quest to improve photosynthesis in certain crops, a step toward adapting plants to rapid climate changes and increasing yields to feed a projected 9 billion people by 2050.
The study, “Improving the Efficiency of Rubisco by Resurrecting Its Ancestors in the Family Solanaceae,” published in Science Advances. The senior author is Maureen Hanson, the Liberty Hyde Bailey Professor of Plant Molecular Biology in the College of Agriculture and Life Sciences. First author Myat Lin is a postdoctoral research associate in Hanson’s lab.
The authors developed a computational technique to predict favorable gene sequences that make Rubisco, a key plant enzyme for photosynthesis. The technique allowed the scientists to identify promising candidate enzymes that could be engineered into modern crops and, ultimately, make photosynthesis more efficient and increase crop yields.
Their method relied on evolutionary history, where the researchers predicted Rubisco genes from 20-30 million years ago, when Earth’s carbon dioxide (CO2) levels were higher than they are today and the Rubisco enzymes in plants were adapted to those levels.