![]() |
Ghost nannofossils (left) with virtual casts (right). The fossils are approximately 5 µm in length, 15 times narrower than the width of a human hair. Credit: S.M Slater |
An international team of scientists from UCL, the Swedish Museum of Natural History, the University of Florence and Natural History Museum have found a remarkable type of fossilization that has remained almost entirely overlooked until now.
The fossils are microscopic imprints, or “ghosts”, of single-celled plankton, called coccolithophores, that lived in the seas millions of years ago, and their discovery is changing our understanding of how plankton in the oceans are affected by climate change.
Coccolithophores are important in today’s oceans, providing much of the oxygen we breathe, supporting marine food webs, and locking carbon away in seafloor sediments. They are a type of microscopic plankton that surround their cells with hard calcareous plates, called coccoliths, and these are what normally fossilize in rocks.
Declines in the abundance of these fossils have been documented from multiple past global warming events, suggesting that these plankton were severely affected by climate change and ocean acidification.