![]() |
Solar panels Credit: Alachua County |
The researchers used a combination of techniques to mimic the process of aging under sunlight and observe changes in the materials at the nanoscale, helping them gain new insights into the materials, which also show potential for optoelectronic applications such as energy-efficient LEDs and X-ray detectors, but are limited in their longevity.
Their results, reported in the journal Nature, could significantly accelerate the development of long-lasting, commercially available perovskite photovoltaics.
Perovksites are abundant and much cheaper to process than crystalline silicon. They can be prepared in liquid ink that is simply printed to produce a thin film of the material.
While the overall energy output of perovskite solar cells can often meet or – in the case of multi-layered ‘tandem’ devices – exceed that achievable with traditional silicon photovoltaics, the limited longevity of the devices is a key barrier to their commercial viability.
A typical silicon solar panel, like those you might see on the roof of a house, typically lasts about 20-25 years without significant performance losses.