![]() |
Sebastian Kruss (right) and Björn Hill belong to the team that was able to measure the messenger substance dopamine directly. Credit: RUB, Kramer |
Carbon nanotubes shine brighter in the presence of the messenger. In this way, signals between nerve cells can be measured easily and precisely.
Dopamine is an important signaling molecule for nerve cells. So far, its concentration could not be determined spatially and temporally. Thanks to a new process, this is now possible: A research team from Bochum, Göttingen and Duisburg used modified carbon nanotubes that glow brighter in the presence of the messenger substance dopamine. With these sensors, the release of dopamine from nerve cells with a resolution that has not yet been achieved has been made visible. The researchers around Prof. Dr. Sebastian Kruss from the Physical Chemistry of the Ruhr University Bochum (RUB) and Dr. James Daniel and Prof. Dr. Nils Brose from the Max Planck Institute for Multidisciplinary Natural Sciences in Göttingen reports on this in the journal PNAS.
Fluorescence changes in the presence of dopamine
The messenger substance dopamine controls, among other things, the reward center of the brain. If this signal transmission no longer works, diseases such as Parkinson's can occur. In addition, the chemical signals are changed by drugs such as cocaine and play a role in addiction. "However, there was previously no method with which the dopamine signals could be made visible at the same time with high spatial and temporal resolution," explains Sebastian Kruss, head of the functional interfaces and biosystems group at the RUB and member of the Ruhr Explores Solvation Cluster of Excellence, in short RESOLV, and the Research Training Group International Graduate School of Neuroscience (IGSN).