![]() |
The model developed by the scientists includes the history of the rotation of the sun but also the magnetic instabilities that it generates. Credit: Sylvia Ekström / UNIGE |
All was amiss with the Sun! In the early 2000s, a new set of data brought down the chemical abundances at the surface of the Sun, contradicting the values predicted by the standard models used by astrophysicists. Often challenged, these new abundances made it through several new analyses. As they seemed to prove correct, it was thus up to the solar models to adapt, especially since they serve as a reference for the study of stars in general. A team of astronomers from the University of Geneva, Switzerland (UNIGE) in collaboration with the Université de Liège, has developed a new theoretical model that solves part of the problem: considering the Sun’s rotation, that varied through time, and the magnetic fields it generates, they have been able to explain the chemical structure of the Sun. The results of this study are published in Nature Astronomy.
“The Sun is the star that we can best characterize, so it constitutes a fundamental test for our understanding of stellar physics. We have abundance measurements of its chemical elements, but also measurements of its internal structure, like in the case of Earth thanks to seismology”, explains Patrick Eggenberger, a researcher at the Department of astronomy of the UNIGE and first author of the study.
These observations should fall in line with the results predicted by the theoretical models which aim at explaining the Sun’s evolution. How does the Sun burn its hydrogen in the core? How is energy produced there and then transported towards the surface? How do chemical elements drift within the Sun, influenced both by rotation and magnetic fields?