Plants have evolved numerous strategies to spread their seeds widely. Some scatter their seeds to the wind, while others tempt animals and birds to eat their seed-filled fruits. And a few rare plants – such as the popping cress Cardamine hirsuta – have evolved exploding seed pods that propel their seeds in all directions. In their new study published in PNAS, Angela Hay and colleagues – from the Max Planck Institute for Plant Breeding Research in Cologne, Germany – investigate what genes control the mechanical structure of these exploding seed pods. Their findings show that a key micronutrient – copper – is essential for laying down a precise pattern of lignin in the seed pods. Lignin is an abundant plant polymer found in lignocellulose, the main structural material in plants. It is present in plant cells walls and is responsible for making wood stiff.
C. hirsuta seed pods consist of two, long valves. When the seeds are ready for dispersal, these valves rapidly separate and coil back, firing seeds out across a large area. The secret to these pods explosive nature is their unique mechanical design, which features three stiff rods of lignin connected by hinges. These hinges are crucial for the explosive release of potential energy stored in the pod. To create these hinged structures, lignin is deposited in a precise pattern in a single layer of seed pod cells, called endocarpb.