A Quantum Science Center-supported team has captured the first-ever appearance of a previously undetectable quantum excitation known as the axial Higgs mode.
This mode manifests as a low-energy excitation in rare-earth tellurides, a class of quantum materials notable for exhibiting charge density wave, or CDW, interactions. This behavior refers to arrangements of interacting electrons in quantum materials that form specific patterns and correlations.
Unlike the regular Higgs mode, which is produced by a Higgs mechanism that provides mass to fundamental particles in the Standard Model of Particle Physics, the axial Higgs mode is visible at room temperature. This characteristic enables more efficient and cost-effective experiments for manipulating quantum materials for various applications – including next-generation memory storage and opto-electronic devices – which would otherwise require extremely cold temperatures.
The team responsible for these results, which are published in Nature, was led by researchers at Boston College and includes scientists from Harvard University, Princeton University, University of Massachusetts Amherst, Yale University, University of Washington and the Chinese Academy of Sciences.