. Scientific Frontline

Friday, June 24, 2022

The laboratory comet


The aim of several scientists is to trace the changes of a comet during its journey through the solar system by reproducing the thermal and light characteristics of the cosmos in the laboratory. This will enable them to understand where the elements that formed the Earth came from and to track down the first traces of life.

Source/Credit: French National Center for Scientific Research

sn062422_01

Proactive approaches needed to enable ecosystems to adapt to climate change

Human activities and infrastructure, such as cities and roads, may reduce future options for species as they need to move to keep pace with climate change. Shown is a willow ptarmigan above a port city.
 Photo Credit: Chris Sergeant.

As the need to address climate change becomes increasingly urgent so too does the concurrent need for proactive stewardship of the Earth’s rapidly changing biosphere, according to research published today in the journal Science.

“There is actually a lot we can do to help systems cope with oncoming climate change,” says Simon Fraser University biology professor and author Jonathan Moore, who with University of Washington professor Daniel Schindler, reviewed and assessed the potential benefits of forward-looking approaches. “From restoring connectivity to reducing local stressors to conserving future habitats—all of these proactive approaches can help the ecosystems that we rely upon to adapt to climate change.”

With that in mind, in order for species and ecosystems to adapt and be resilient it is critical to move beyond preservation-oriented approaches and include those that enable ecological change, Schindler notes. “Local efforts to conserve biodiversity and regenerate habitat complexity will also help maintain a diversity of future options for species and ecosystems in an unpredictable future.”

Developmental dyslexia essential to human adaptive success, study argues

Photo by Allan Mas
Cambridge researchers studying cognition, behavior and the brain have concluded that people with dyslexia are specialized in exploring the unknown. This is likely to play a fundamental role in human adaptation to changing environments.

They think this ‘explorative bias’ has an evolutionary basis and plays a crucial role in our survival.

Based on these findings − which were apparent across multiple domains from visual processing to memory and at all levels of analysis − the researchers argue that we need to change our perspective of dyslexia as a neurological disorder.

The findings, reported today in the journal Frontiers in Psychology, have implications both at the individual and societal level, says lead author Dr Helen Taylor, an affiliated Scholar at the McDonald Institute for Archaeological Research at the University of Cambridge and a Research Associate at the University of Strathclyde.

“The deficit-centered view of dyslexia isn’t telling the whole story,” said Taylor. “This research proposes a new framework to help us better understand the cognitive strengths of people with dyslexia.”

She added: “We believe that the areas of difficulty experienced by people with dyslexia result from a cognitive trade-off between exploration of new information and exploitation of existing knowledge, with the upside being an explorative bias that could explain enhanced abilities observed in certain realms like discovery, invention and creativity.”

This is the first-time a cross-disciplinary approach using an evolutionary perspective has been applied in the analysis of studies on dyslexia.

New study solves long-standing mystery of what may have triggered ice age

At the beginning of the last ice, local mountain glaciers grew and formed large ice sheets, like the one seen here in Greenland, that covered much of today's Canada, Siberia, and Northern Europe.
Credit: Annie Spratt/Unsplash

A new study led by University of Arizona researchers may have solved two mysteries that have long puzzled paleo-climate experts: Where did the ice sheets that rang in the last ice age more than 100,000 years ago come from, and how could they grow so quickly?

Understanding what drives Earth’s glacial–interglacial cycles – the periodic advance and retreat of ice sheets in the Northern Hemisphere – is no easy feat, and researchers have devoted substantial effort to explaining the expansion and shrinking of large ice masses over thousands of years. The new study, published in the journal Nature Geoscience, proposes an explanation for the rapid expansion of the ice sheets that covered much of the Northern Hemisphere during the most recent ice age, and the findings could also apply to other glacial periods throughout Earth's history.

About 100,000 years ago, when mammoths roamed the Earth, the Northern Hemisphere climate plummeted into a deep freeze that allowed massive ice sheets to form. Over a period of about 10,000 years, local mountain glaciers grew and formed large ice sheets covering much of today's Canada, Siberia and northern Europe.

While it has been widely accepted that periodic "wobbling" in the Earth's orbit around the sun triggered cooling in the Northern Hemisphere summer that caused the onset of widespread glaciation, scientists have struggled to explain the extensive ice sheets covering much of Scandinavia and northern Europe, where temperatures are much milder.

Thursday, June 23, 2022

Boron nitride nanotube fibers get real

A tangle of unprocessed boron nitride nanotubes seen through a scanning electron microscope. Rice University scientists introduced a method to combine them into fibers using the custom wet-spinning process they developed to make carbon nanotube fibers.
Credit: Pasquali Research Group/Rice University

Boron nitride nanotubes used to be hard to process, according to Rice University researchers. Not anymore.

A Rice team led by professors Matteo Pasquali and Angel Martí has simplified handling of the highly valuable nanotubes to make them more suitable for large-scale applications, including aerospace, electronics and energy-efficient materials.

The researchers reported in Nature Communications that boron nitride nanotubes, aka BNNTs, assemble themselves into liquid crystals under the right conditions, primarily concentrations above 170 parts per million by weight in chlorosulfonic acid.

These liquid crystals consist of aligned BNNTs that are far easier to process than the tangled nanotubes that usually form in solution. The lab proceeded to form fibers and films from the liquid crystalline solutions.

Climate change could lead to a dramatic temperature-linked decrease in essential omega-3 fatty acids

MIT-WHOI Joint Program student Henry Holm pumping seawater for lipid samples from beneath sea ice on the Western Antarctic Peninsula, 2018. This is for a WHOI-led study that conducted a global survey of lipids in the ocean in order to analyze omega-3 fatty acids.
Image credit: Benjamin Van Mooy / © Woods Hole Oceanographic Institution

The effects of global climate change already are resulting in the loss of sea ice, accelerated sea level rise, and longer and more intense heat waves, among other threats.

Now, the first-ever survey of planktonic lipids in the global ocean predicts a temperature-linked decrease in the production of essential omega-3 fatty acids, an important subset of lipid molecules.

A significant implication of the survey is that as global warming proceeds, there will be fewer and fewer omega-3 fatty acids produced by plankton at the base of the food web, which will mean less omega-3 fatty acids available for fish and for people. Omega-3 fatty acid is an essential fat that the human body cannot produce on its own, and is widely regarded as a “good” fat that links seafood consumption to heart health.

The survey analyzed 930 lipid samples across the global ocean using a uniform high-resolution accurate mass spectrometry analytical workflow, “revealing heretofore unknown characteristics of ocean planktonic lipidomes,” which is the entirety of hundreds to thousands of lipid species in a sample, according to a new paper led by authors from the Woods Hole Oceanographic Institution (WHOI).

“Focusing on ten molecularly diverse glycerolipid classes we identified 1,151 distinct lipid species, finding that fatty acid unsaturation (i.e., number of carbon-to-carbon double bonds) is fundamentally constrained by temperature. We predict significant declines in the essential fatty acid eicosapentaenoic acid [EPA] over the next century, which are likely to have serious deleterious effects on economically critical fisheries,” states the paper, “Global ocean lipidomes show a universal relationship between temperature and lipid unsaturation,” published in the journal Science.

Robots play with play dough


The inner child in many of us feels an overwhelming sense of joy when stumbling across a pile of the fluorescent, rubbery mixture of water, salt, and flour that put goo on the map: play dough. (Even if this happens rarely in adulthood.)

While manipulating play dough is fun and easy for 2-year-olds, the shapeless sludge is hard for robots to handle. Machines have become increasingly reliable with rigid objects, but manipulating soft, deformable objects comes with a laundry list of technical challenges, and most importantly, as with most flexible structures, if you move one part, you’re likely affecting everything else.

Scientists from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) and Stanford University recently let robots take their hand at playing with the modeling compound, but not for nostalgia’s sake. Their new system learns directly from visual inputs to let a robot with a two-fingered gripper see, simulate, and shape doughy objects. “RoboCraft” could reliably plan a robot’s behavior to pinch and release play dough to make various letters, including ones it had never seen. With just 10 minutes of data, the two-finger gripper rivaled human counterparts that teleoperated the machine — performing on-par, and at times even better, on the tested tasks.

Giant Bacteria Found in Guadeloupe Mangroves Challenge Traditional Concepts

Artistic rendering of Ca. Thiomargarita magnifica with dime.
Credit: Mangrove photo by Pierre Yves Pascal; Illustration by Susan Brand/Berkeley Lab
Full Size Image

At first glance, the slightly murky waters in the tube look like a scoop of stormwater, complete with leaves, debris, and even lighter threads in the mix. But in the Petri dish, the thin vermicelli-like threads floating delicately above the leaf debris are revealed to be single bacterial cells, visible to the naked eye.

The unusual size is notable because bacteria aren’t usually visible without the assistance of microscope. “It’s 5,000 times bigger than most bacteria. To put it into context, it would be like a human encountering another human as tall as Mount Everest,” said Jean-Marie Volland, a scientist with joint appointments at the U.S. Department of Energy (DOE) Joint Genome Institute (JGI), a DOE Office of Science User Facility located at Lawrence Berkeley National Laboratory (Berkeley Lab) and the Laboratory for Research in Complex Systems (LRC) in Menlo Park, Calif. In the June 24, 2022, issue of the journal Science, Volland and colleagues, including researchers at the JGI and Berkeley Lab, LRC, and at the Université des Antilles, described the morphological and genomic features of this giant filamentous bacterium, along with its life cycle.

Artificial photosynthesis can produce food without sunshine

Plants are growing in complete darkness in an
acetate medium that replaces biological photosynthesis.
Credit: Marcus Harland-Dunaway/UCR
Full Size Image
Photosynthesis has evolved in plants for millions of years to turn water, carbon dioxide, and the energy from sunlight into plant biomass and the foods we eat. This process, however, is very inefficient, with only about 1% of the energy found in sunlight ending up in the plant. Scientists at UC Riverside and the University of Delaware have found a way to bypass the need for biological photosynthesis altogether and create food independent of sunlight by using artificial photosynthesis.

The research, published in Nature Food, uses a two-step electrocatalytic process to convert carbon dioxide, electricity, and water into acetate, the form of the main component of vinegar. Food-producing organisms then consume acetate in the dark to grow. Combined with solar panels to generate the electricity to power the electrocatalysis, this hybrid organic-inorganic system could increase the conversion efficiency of sunlight into food, up to 18 times more efficient for some foods.

“With our approach we sought to identify a new way of producing food that could break through the limits normally imposed by biological photosynthesis,” said corresponding author Robert Jinkerson, a UC Riverside assistant professor of chemical and environmental engineering.

In order to integrate all the components of the system together, the output of the electrolyzer was optimized to support the growth of food-producing organisms. Electrolyzers are devices that use electricity to convert raw materials like carbon dioxide into useful molecules and products. The amount of acetate produced increased while the amount of salt used decreased, resulting in the highest levels of acetate ever produced in an electrolyzer to date.

“Using a state-of-the-art two-step tandem CO2 electrolysis setup developed in our laboratory, we were able to achieve a high selectivity towards acetate that cannot be accessed through conventional CO2 electrolysis routes,” said corresponding author Feng Jiao at University of Delaware.

Researchers reveal new molecular mechanism for Parkinson’s disease risk

In about a fifth of the cases of Parkinson’s disease, look to a small, malfunctioning protein in the lysosome as a risk factor, say University of Michigan researchers.

Lysosomes are the garbage collectors of cells. These organelles are responsible for breaking down the “trash” in the cell—misfolded proteins, worn out organelles—that cells collect in a process called autophagy. Autophagy depends closely on lysosome function, and when lysosomes malfunction and this process is disrupted, causing cellular debris to build up, various disorders can occur. Many of these are degenerative disorders such as Alzheimer’s disease, Duchenne muscular dystrophy and Tay-Sachs disease.

Now, U-M researchers have discovered how a mutated protein called TMEM175 acts as a risk factor in about 20% of cases of Parkinson’s disease. In Parkinson’s, nerve cells in the area of the brain that controls movement begin to fail and die. According to the National Institute on Aging, researchers think Parkinson’s is a result of a combination of genetic and environmental factors.

The U-M researchers found that if mutated, TMEM 175 does not properly regulate the acidity of the environment within the lysosome. If the acidity in that environment is not correct, enzymes within lysosomes stop working effectively, and the organelles cannot perform their roles correctly. Their study results are published in the journal Cell.

Featured Article

Discovery of unexpected collagen structure could ‘reshape biomedical research’

Jeffrey Hartgerink is a professor of chemistry and bioengineering at Rice. Photo Credit: Courtesy of Jeffrey Hartgerink / Rice University Co...

Top Viewed Articles