![]() |
An illustration of a vortex tangle. Credit: Wei Guo/FAMU-FSU College of Engineering |
An international team of scientists featuring Florida State University researchers has developed a model that predicts the spread of vortices in so-called superfluids, work that provides new insight into the physics that govern turbulence in quantum fluid systems such as superfluid neutron stars.
In a paper published in Physical Review Letters, the researchers created a model that describes the spread and speed of tornado-like vortex tubes in superfluids. Vortex tubes are a key ingredient of turbulence, which is widely studied in classical physics. The motion of vortex tubes is relevant in a wide range of scenarios, such as the formation of hurricanes, the airborne transmission of viruses and the chemical mixing in star formation. But it is poorly understood in quantum fluids.
This work expands on a previous study that reported experimental results obtained in superfluid helium-4 within a narrow temperature range. Superfluids are liquids that can flow without resistance, and therefore without a loss of kinetic energy. When they are stirred, they form vortices that rotate indefinitely.
“By validating this model and showing that it describes the movement of vortices at a wide range of temperatures, we are confirming a universal rule for this phenomenon,” said Wei Guo, an associate professor of mechanical engineering at the FAMU-FSU College of Engineering. “This discovery may aid the development of advanced theoretical models of quantum fluid turbulence.”