The octahedral molecular sieve (OMS-1) is a very powerful manganese oxide-based catalyst, and researchers from Tokyo Tech have found a remarkably simple way to synthesize it. By using a low-crystallinity precursor and a straightforward solid-state transformation method, they managed to produce high-quality OMS-1 nanoparticles. Their unprecedented catalytic performance and durability prove the potential of this novel synthesis approach for developing efficient catalysts and functional materials.
Manganese oxides have received much attention from materials scientists due to their widespread applications including electrodes, catalysts, sensors, supercapacitors, and biomedicine. Further, manganese is widely abundant and has many oxidation states, which allows it to form various interesting crystalline structures.
One such structure is the "todorokite-type manganese oxide octahedral molecular sieve (OMS-1)," a crystal whose unit cells (simplest repeating units of the crystal) consist of three-by-three MnO6 octahedral chains. Though promising as a catalyst, the potential of OMS-1 is limited by two reasons. First, its conventional synthesis methods are complex multi-step crystallization processes involving hydrothermal or reflux treatment. Second, these processes tend to create crystals with a higher particle size and a lower surface area, features detrimental to catalytic performance.