. Scientific Frontline

Saturday, August 6, 2022

UC gets NASA grant to improve drone navigation

UC will work with the Pennsylvania company VISIMO to develop better autonomous navigation for drones as part of a NASA grant.
Resized Image using AI by SFLORG
Credit: Andrew Higley/UC Marketing + Brand

NASA awarded a small business grant to the University of Cincinnati and a Pennsylvania company to develop better autonomous navigation for drones.

UC is among 41 public institutions and 257 small businesses across the United States that will share $50 million in Small Business Innovation Research grants.

“NASA is working on ambitious, groundbreaking missions that require innovative solutions from a variety of sources, especially our small businesses,” NASA Deputy Administrator Pam Melroy said.

UC College of Engineering and Applied Science aerospace engineering professor Kelly Cohen will work with the company VISIMO, based in Carnegie, Pennsylvania, to develop a testing environment that helps evaluate the safety and stability of artificial intelligence models used in autonomous drones. Using a 3D simulation, the project will test the complex sensor fusion and decision-making routines needed for real-time autonomous navigation.

According to the grant application, the simulations will help put the artificial intelligence to the test in situations that feature cascading failures in emergency situations such as a sudden storm that knocks out a drone’s sensor or cameras.

Thursday, August 4, 2022

How plants regulate their sugar balance

Work in the laboratory begins with these tiny Arabidopsis seedlings.
Credit: RUB, Klaus Hagemann

The function of the regulator protein SPL7 in nutrient absorption from the soil was already known. Now it turns out that this protein also plays a role in a completely different context.

As important nutrients, metals, such as copper, convey the functions of many proteins. If this element is in short supply, plants can increase its absorption and switch to copper-independent metabolic pathways. The decisive factor for this is the protein Squamosa Promoter-Binding Protein-Like 7, or SPL7 for short. It belongs to the group of proteins that can regulate which genes are increasingly read and which proteins are increasingly produced. As researchers at the Ruhr University Bochum (RUB) have now found, SPL7 is also essential for energy metabolism.

A team led by Prof. Dr. Ute Krämer from the Chair of Molecular Genetics and Physiology of Plants at the RUB together with colleagues from the Max Planck Institute for Plant Breeding Research in Cologne and for Molecular Plant Physiology in Potsdam in the journal "The Plant Cell".

In photosynthesis, plants produce sugar from carbon dioxide and water using light energy alone. This results in high-energy substances that are the basis of all life on earth. "The improved understanding of how plants control their sugar balance in this study can be useful for the development of new plant-based biotechnological processes," says Ute Krämer. “The findings could also help to increase agricultural yields on copper deficiency soils."

Study tracks plant pathogens in leafhoppers from natural areas

Leafhoppers that are known – or are likely – to transmit phytoplasmas to plants include, clockwise, from top left, species of the genera Hishimonoides, Macrosteles, Amplicephalus, Osbornellus and Amplicephalus. The leafhopper on the lower right, Osbornellus auronitens, was found for the first time to harbor a phytoplasma strain.
Credit: Christopher Dietrich

Phytoplasmas are bacteria that can invade the vascular tissues of plants, causing many different crop diseases. While most studies of phytoplasmas begin by examining plants showing disease symptoms, a new analysis focuses on the tiny insects that carry the infectious bacteria from plant to plant. By extracting and testing DNA from archival leafhopper specimens collected in natural areas, the study identified new phytoplasma strains and found new associations between leafhoppers and phytoplasmas known to harm crop plants.

Reported in the journal Biology, the study is the first to look for phytoplasmas in insects from natural areas, said Illinois Natural History Survey postdoctoral researcher Valeria Trivellone, who led the research with INHS State Entomologist Christopher Dietrich. It also is the first to use a variety of molecular approaches to detect and identify phytoplasmas in leafhoppers.

“We compared traditional molecular techniques with next-generation sequencing approaches, and we found that the newer techniques outperformed the traditional ones,” Trivellone said. These methods will allow researchers to target more regions of the phytoplasma genomes to get a clearer picture of the different bacterial strains and how they damage plants, she said.

“One thing that is really novel about this study is that we’ve focused on the vectors of disease, on the leafhoppers, and not on the plants,” Dietrich said. The standard approach of looking for phytoplasmas in plants is much more labor-intensive, requiring that scientists extract the DNA from a plant that appears to be diseased and checking for phytoplasmas, he said.

Monday, August 1, 2022

Mystery in the Gulf

The Hillsborough River at Rotary River Park. One of several sites where project scientists will collect samples to measure the iron and nitrogen content of the Hillsborough River,which carries nutrients into Tampa Bay and into the Gulf of Mexico.
Credit: Tim Conway, USF.

West of St. Petersburg in the Gulf of Mexico is an area called the West Florida Shelf. It’s a marine desert, cut off from many of the elements that are essential for life.

But in this nutrient-deficient region, some forms of phytoplankton — microscopic plants that float through the water — are thriving and supporting other forms of life. But how?

Florida State University Associate Professor Angie Knapp and a team of researchers from around the country have received a $2.3 million grant from the National Science Foundation to investigate this oceanographic mystery. Knapp, part of the Department of Earth, Ocean and Atmospheric Science in the College of Arts and Sciences, will lead the project to examine how iron and nitrogen released from submarine groundwater discharge potentially serves as a fertilizer for phytoplankton in this area and beyond.

“Plant growth in the ocean plays an important role in regulating atmospheric carbon dioxide concentrations, which plays an important role in regulating climate,” Knapp said. “However, plant growth in the ocean is often limited by the availability of nitrogen; thus, we’re focusing on the processes that add and remove nitrogen to and from the ocean.”

Enzyme, proteins work together to tidy up tail ends of DNA in dividing cells

From left, Qixiang He, Ci Ji Lim, Xiuhua Lin. 
Resized Image using AI by SFLORG
Credit: University of Wisconsin–Madison

Researchers at the University of Wisconsin–Madison have described the way an enzyme and proteins interact to maintain the protective caps, called telomeres, at the end of chromosomes, a new insight into how a human cell preserves the integrity of its DNA through repeated cell division.

DNA replication is essential for perpetuating life as we know it, but many of the complexities of the process — how myriad biomolecules get where they need to go and interact over a series of intricately orchestrated steps — remain mysterious.

“The mechanisms behind how this enzyme, called Polα-primase, works have been elusive for decades,” says Ci Ji Lim, an assistant professor of biochemistry and principal investigator on new research into DNA replication published recently in Nature. “Our study provides a big breakthrough in understanding DNA synthesis at the ends of chromosomes, and it generates new hypotheses about how Polα-primase — a central cog in the DNA replication machine — operates.”

Every time a cell divides, the telomeres at the end of the long DNA molecule that makes up a single chromosome shorten slightly. Telomeres protect chromosomes like an aglet protects the end of a shoelace. Eventually, the telomeres are so short that vital genetic code on a chromosome is exposed and the cell, unable to function normally, enters a zombie state. Part of a cell’s routine maintenance includes preventing excessive shortening by replenishing this DNA using Polα-primase.

Study finds nickelate superconductors are intrinsically magnetic

A muon, center, spins like a top within the atomic lattice of a thin film of superconducting nickelate. These elementary particles can sense the magnetic field created by the spins of electrons up to a billionth of a meter away. By embedding muons in four nickelate compounds at the Paul Scherrer Institute in Switzerland, researchers at SLAC and Stanford discovered that the nickelates they tested host magnetic excitations whether they’re in their superconducting states or not – another clue in the long quest to understand how unconventional superconductors can conduct electric current with no loss.
 Credit: Jennifer Fowlie/SLAC National Accelerator Laboratory

Electrons find each other repulsive. Nothing personal – it’s just that their negative charges repel each other. So, getting them to pair up and travel together, like they do in superconducting materials, requires a little nudge.

In old-school superconductors, which were discovered in 1911 and conduct electric current with no resistance, but only at extremely cold temperatures, the nudge comes from vibrations in the material’s atomic lattice.

But in newer, “unconventional” superconductors – which are especially exciting because of their potential to operate at close to room temperature for things like zero-loss power transmission – no one knows for sure what the nudge is, although researchers think it might involve stripes of electric charge, waves of flip-flopping electron spins that create magnetic excitations, or some combination of things.

In the hope of learning more by looking at the problem from a slightly different angle, researchers at Stanford University and the Department of Energy’s SLAC National Accelerator Laboratory synthesized another unconventional superconductor family – the nickel oxides, or nickelates. Since then, they’ve spent three years investigating the nickelates’ properties and comparing them to one of the most famous unconventional superconductors, copper oxides or cuprates.

Super-earth skimming habitable zone of red dwarf

 The green region represents the habitable zone where liquid water can exist on the planetary surface. The planetary orbit is shown as a blue line. Ross 508 b skims the inner edge of the habitable zone (solid line), possibly crossing into the habitable zone for part of the orbit (dashed line).
Credit: Astrobiology Center

A super-Earth planet has been found near the habitable zone of a red dwarf star only 37 light-years from the Earth. This is the first discovery by a new instrument on the Subaru Telescope and offers a chance to investigate the possibility of life on planets around nearby stars. With such a successful first result, we can expect that the Subaru Telescope will discover more, potentially even better, candidates for habitable planets around red dwarfs.

Red dwarfs, stars smaller than the Sun, account for three-quarters of the stars in the Milky Way Galaxy, and are abundant in the neighborhood around the Sun. As such, they are important targets in the search for nearby extra-solar planets and extraterrestrial life. But red dwarfs are cool and don’t emit much visible light compared to other types of stars, making it difficult to study them.

In the infrared wavelengths red dwarfs are brighter. So, the Astrobiology Center in Japan developed an infrared observational instrument mounted on the Subaru Telescope to search for signs of planets around red dwarf stars. The instrument is called IRD for Infrared Doppler, the observational method used in this search.

Artificial Intelligence Edges Closer to the Clinic

TransMED can help predict the outcomes of COVID-19 patients, generating predictions from different kinds of clinical data, including clinical notes, laboratory tests, diagnosis codes and prescribed drugs. The other uniqueness of TransMED lies in its ability to transfer learn from existing diseases to better predict and reason about progression of new and rare diseases. 
Credit: Shannon Colson | Pacific Northwest National Laboratory

The beginning of the COVID-19 pandemic presented a huge challenge to healthcare workers. Doctors struggled to predict how different patients would fare under treatment against the novel SARS-CoV-2 virus. Deciding how to triage medical resources when presented with very little information took a mental and physical toll on caregivers as the pandemic progressed.

To ease this burden, researchers at Pacific Northwest National Laboratory (PNNL), Stanford University, Virginia Tech, and John Snow Labs developed TransMED, a first-of-its-kind artificial intelligence (AI) prediction tool aimed at addressing issues caused by emerging or rare diseases.

“As COVID-19 unfolded over 2020, it brought a number of us together into thinking how and where we could contribute meaningfully,” said chief scientist Sutanay Choudhury. “We decided we could make the most impact if we worked on the problem of predicting patient outcomes.”

“COVID presented a unique challenge,” said Khushbu Agarwal, lead author of the study published in Nature Scientific Reports. “We had very limited patient data for training an AI model that could learn the complex patterns underlying COVID patient trajectories.”

The multi-institutional team developed TransMED to address this challenge, analyzing data from existing diseases to predict outcomes of an emerging disease.

New Method to Promote Biofilm Formation and Increase Efficiency of Biocatalysis

 The researchers screened synthetic polymers for their ability to induce biofilm formation in a strain of E. coli (MC4100), which is known to be poor at forming biofilms. They also monitored the biomass and biocatalytic activity of both MC4100 and PHL644 (a good biofilm former), incubated the presence of these polymers, and found that MC4100 matched and even outperformed PHL644.
Credit: EzumeImages

Birmingham scientists have revealed a new method to increase efficiency in biocatalysis, in a paper published today in Materials Horizons.

Biocatalysis uses enzymes, cells or microbes to catalyze chemical reactions, and is used in settings such as the food and chemical industries to make products that are not accessible by chemical synthesis. It can produce pharmaceuticals, fine chemicals, or food ingredients on an industrial scale.

However, a major challenge in biocatalysis is that the most commonly used microbes, such as probiotics and non-pathogenic strains of Escherichia coli, are not necessarily good at forming biofilms, the growth promoting ecosystems that form a protective micro-environment around communities of microbes and increase their resilience and so boost productivity.

This problem is normally solved by genetic engineering, but researchers Dr Tim Overton from the university’s School of Chemical Engineering, and Dr Francisco Fernández Trillo from the School of Chemistry*, both of whom are members of the Institute of Microbiology and Infection, set out to create an alternative method to bypass this costly and time-consuming process.

The researchers identified a library of synthetic polymers and screened them for their ability to induce biofilm formation in E. coli, a bacterium that is one of the most widely studied micro-organisms, and commonly used in biocatalysis.

Why are some birds more intelligent than others?

Barbados bullfinch flying off with sugar packet.
Resized Image using AI by SFLORG
Source: McGill University

If you’ve ever seen a starling peck open a garbage bag or a grackle steal your dog pellets, you get a sense that some birds have learned to take advantage of new feeding opportunities – a clear sign of their intelligence. Scientists have long wondered why certain species of birds are more innovative than others, and whether these capacities stem from larger brains (which intuitively seems likely) or from a greater number of neurons in specific areas of the brain.

It turns out that it’s a bit of both, according to a recent study by an international team that included members from McGill University published in Nature Ecology and Evolution.

More neurons in the right place tied to greater intelligence in birds

The researchers used a new technique to estimate the number of neurons in a specific part of the brain called the pallium in 111 bird species. The pallium in birds is the equivalent of the human cerebral cortex, which is involved in memory, learning, reasoning, and problem-solving, among other things. When these estimates about neuron numbers in the pallium were combined with information about over 4,000 foraging innovations, the team found that the species with the higher numbers of neurons in the pallium were also likely to be the most innovative.

Featured Article

Discovery of unexpected collagen structure could ‘reshape biomedical research’

Jeffrey Hartgerink is a professor of chemistry and bioengineering at Rice. Photo Credit: Courtesy of Jeffrey Hartgerink / Rice University Co...

Top Viewed Articles