. Scientific Frontline

Sunday, August 7, 2022

When a task adds more steps, this circuit helps you notice

In their study, researchers traced neurons projecting from the anterior cingulate cortex (right, red) to the motor cortex (left, green). Note the images are at different scales.
Source: Picower Institute for Learning and Memory

Life is full of processes to learn and then relearn when they become more elaborate. One day you log in to an app with just a password, then the next day you also need a code texted to you. One day you can just pop your favorite microwavable lunch into the oven for six straight minutes, but then the packaging changes and you have to cook it for three minutes, stir, and then heat it for three more. Our brains need a way to keep up. A new study by neuroscientists at The Picower Institute for Learning and Memory at MIT reveals some of the circuitry that helps a mammalian brain learn to add steps.

In Nature Communications the scientists report that when they changed the rules of a task, requiring rats to adjust from performing just one step to performing two, a pair of regions on the brain’s surface, or cortex, collaborated to update that understanding and change the rats’ behavior to fit the new regime. The anterior cingulate cortex (ACC) appeared to recognize when the rats weren’t doing enough and updated cells in the motor cortex (M2) to adjust the task behavior.

“I started this project about 7 or 8 years ago when I wanted to study decision making.” said Daigo Takeuchi, a researcher at the University of Tokyo who led the work as a postdoc at the RIKEN-MIT Laboratory for Neural Circuit Genetics at The Picower Institute directed by senior author and Picower Professor Susumu Tonegawa. “New studies were finding a role for M2. I wanted to study what upstream circuits were influencing this.”

University Scientists Work on Advanced Nanomaterials

Under the leadership of Vladimir Shur, several scientific groups are conducting research.
Credit: Ilya Safarov

Synthesis of new materials with unique characteristics for practical applications is the goal of the project "Experimental and Theoretical Investigation of Physical Properties of Advanced Nanomaterials," which was launched at Ural Federal University. The state program for supporting universities, Priority 2030, in which the Ural Federal University is a participant, is also focused on this very goal. The project will last until 2025 inclusive.

The project is implemented by six groups consisting of 40 scientists. Researchers are united by general objectives: to study and describe the formation processes and physical features of micro- and nanoscale structures to create promising solid-state materials based on segmentelectrics, dielectrics, semiconductors, and superconductors.

The project is led by the world-renowned scientist Vladimir Shur, Professor at the Department of Condensed Matter Physics and Nanoscale Systems, Chief Researcher at the Section of Optoelectronics and Semiconductor Technology, and Head of the Ural Multiple Access Center "Modern Nanotechnologies". One of the experimental-theoretical groups under his leadership studies the evolution of domain structures in ferroelectric crystals.

"Segnetoelectrics have a domain structure that can be changed by applying an external electric field. The creation of stable domain structures with a given geometry is a rapidly developing field of science and technology - domain engineering. Targeted design of micro- and nanoscale domain structures makes it possible to significantly improve a variety of important application-specific characteristics of segmentelectrics," says Vladimir Shur.

‘Green’ poultry farming heats up with geothermal innovation

Professor Guillermo Narsilio in a geothermal plant.
Credit: Peter Casamento

A new hybrid geothermal and solar energy system is set to dramatically reduce emissions and energy costs for many Australian poultry farms.

The University of Melbourne has teamed up with geothermal companies Ground Source Systems and Fourth Element Energy to create a hybrid geothermal and solar heating, ventilation and air conditioning (HVAC) system specifically for the poultry industry.

The project is funded through a $318,000 grant from the Federal Government’s Australian Renewable Energy Agency (ARENA), which supports the global transition to net zero emissions by accelerating pre-commercial innovation.

The project will demonstrate how the energy demands of sheds can be coordinated with on-site renewable energy production, showing both economic and environmental benefits to farmers to further support the uptake of the technology across the industry.

The system includes a ground-source (geothermal) heat pump system and full-scale solar photovoltaic (PV) system with gas back-up, which can supply the HVAC needs of poultry farms.

The first stage of the project will see a demonstration, full-scale hybrid system installed and optimized for efficiency at the commercial poultry farm Bargo in Yanderra, NSW, this year.

No trace of dark matter halos

The dwarf galaxy NGC1427A flies through the Fornax galaxy cluster and undergoes disturbances which would not be possible if this galaxy were surrounded by a heavy and extended dark matter halo, as required by standard cosmology.
Credit: ESO

According to the standard model of cosmology, the vast majority of galaxies are surrounded by a halo of dark matter particles. This halo is invisible, but its mass exerts a strong gravitational pull-on galaxies in the vicinity. A new study led by the University of Bonn and the University of Saint Andrews (Scotland) challenges this view of the Universe. The results suggest that the dwarf galaxies of Earth’s second closest galaxy cluster – known as the Fornax Cluster – are free of such dark matter halos. The study appeared in the journal Monthly Notices of the Royal Astronomical Society.

Dwarf galaxies are small, faint galaxies that can usually be found in galaxy clusters or near larger galaxies. Because of this, they might be affected by the gravitational effects of their larger companions. “We introduce an innovative way of testing the standard model based on how much dwarf galaxies are disturbed by gravitational, tides’ from nearby larger galaxies”, said Elena Asencio, a PhD student at the University of Bonn and the lead author of the story. Tides arise when gravity from one body pulls differently on different parts of another body. These are similar to tides on Earth, which arise because the moon pulls more strongly on the side of Earth which faces the moon.

The Fornax Cluster has a rich population of dwarf galaxies. Recent observations show that some of these dwarfs appear distorted, as if they have been perturbed by the cluster environment. "Such perturbations in the Fornax dwarfs are not expected according to the Standard Model,” said Pavel Kroupa, Professor at the University of Bonn and Charles University in Prague. “This is because, according to the standard model, the dark matter halos of these dwarfs should partly shield them from tides raised by the cluster."

Fishnet Shell Formed by Jumbo Phages Offers Protection Against Bacterial Host Defenses

The chimallin protein assembles as a cube in vitro, consisting of 24 individual chimallin proteins. In the cell, thousands of chimallin protomers assemble into the phage nucleus shell as a sheet made of square tiles.
Credit: Corbett & Villa Labs, UC San Diego

The large viruses known as jumbo phages employ a curious counter-defense strategy to protect their DNA while attacking bacteria. Now, scientists have identified the key protein involved and solved its structure.

It’s a dog-eat-dog world out there, even for those that live on a microscopic scale. Bacteria, battling to survive against invaders, have devised various defense mechanisms over billions of years. In turn, phages — viruses that attack bacteria — have craftily come up with a few evasive maneuvers of their own.

“It’s an arms race,” says biophysicist Elizabeth Villa, a Howard Hughes Medical Institute (HHMI) Investigator at the University of California, San Diego (UC San Diego). “There’s very complex biology in the fight between bacteria and phages.”

In 2017, Villa and her collaborator Joe Pogliano discovered one of the more curious counter-defense strategies, employed by a group of viruses called jumbo phages. When the phages enter bacterial cells, they assemble a special ‘nucleus-like’ shell around their viral DNA, thus preserving their ability to replicate and eventually take over the host bacterium.

“We saw a closed compartment made from a single layer of protein,” says Villa. However, the images obtained at that time were too fuzzy to determine the protein’s exact identity and overall shape.

But now, new research from Villa’s team, published August 3, 2022, in Nature, fills in those missing gaps. The nuclear shell, they discovered, consists primarily of a previously undescribed protein called chimallin, which forms a quadrangular mesh around the phage DNA.

Sniffing out cancer with locust brains

With their antennae and neural circuitry, locusts can differentiate myriad odors, including those released by cancer cells. Spartan researchers are tapping into the insects’ brains to take advantage of that for early detection.
Resized Image using AI by SFLORG
Credit: Derrick L. Turner

Researchers at Michigan State University have shown that locusts can not only “smell” the difference between cancer cells and healthy cells, but they can also distinguish between different cancer cell lines.

However, patients need not worry about locusts swarming their doctors’ offices. Rather, the researchers say this work could provide the basis for devices that use insect sensory neurons to enable the early detection of cancer using only a patient’s breath.

Although such devices aren’t on the immediate horizon, they’re not as far-fetched as they might sound, said the authors of the new research shared May 25 on the website BioRxiv.

Part of that is because people have grown accustomed to technology that augments or outperforms our natural senses. For example, telescopes and microscopes reveal otherwise invisible worlds. The success of engineered devices can make it easy to overlook the performance of our natural tools, especially the sense organ right in front of our eyes.

Researchers unveil key processes in marine microbial evolution

Microbial eukaryotes have made hundreds of great leaps from sea to land, which would explain today's great biodiversity
Credit: Albert Reñé.

An international study in which the ICM-CSIC has participated has reconstructed the evolutionary history of microbial diversity over the last 2,000 million years.

A study published recently in the prestigious journal Nature Ecology and Evolution has unveiled some of the key processes in marine microbial evolution. According to the study, led by the Uppsala University (Sweden) and with the participation of the Institut de Ciències del Mar (ICM-CSIC) of Barcelona, it is the large number of habitat transitions -from sea to land and vice versa- that have occurred in the last millions of years that explains the great current diversity.

According to the authors, "crossing the salinity barrier is not easy for organisms and, when this happens, the resulting transitions are key evolutionary events that can trigger explosions of diversity". However, until now it was not known how frequent these transitions have been in the eukaryotic tree of life, which comprises animals, plants and a wide variety of eukaryotic microorganisms.

Small but very versatile

Specifically, the work published now has shown that microbial eukaryotes have made hundreds of great leaps from sea to land, and also to freshwater habitats, and vice versa, during their evolution. This, in turn, has made it possible to deduce where the ancestors of each of the microbial eukaryote groups were found.

"Thanks to the fact that we have good phylogenetic trees and samples from different environments, we have been able to analyze the habitat transitions in different groups of eukaryotes, which have been hundreds of times during millions of years of eukaryotic evolution, which is more than we thought," explains Ramon Massana, ICM-CSIC researcher and one of the authors of the study.

How bat brains listen out for incoming signals during echolocation

Bats "see" with the ears. Scientists at Goethe University have found out how the auditory cortex is prepared for the incoming acoustic signals.
Credit: Hechavarria

When bats emit sounds for echolocation, a feedback loop modulates the sensitivity of the auditory cortex for incoming acoustic signals. Neuroscientists from the Goethe University Frankfurt found out. In a study published in the journal "Nature Communications", they show that the flow of information in the neuronal circuit involved reversed as the sound was generated. This feedback prepares the auditory cortex for the expected “echoes” of the sounds sent out. The researchers see their results as a sign that the importance of feedback loops in the brain is currently still underestimated.

Bats are famous for their ultrasound navigation: they orientate themselves through their extremely sensitive hearing by emitting ultrasound sounds and getting a picture of their environment based on the sound thrown back. For example, the eyelid nose bat (Carollia perspicillata) the fruits she prefers as food through this echolocation system. At the same time, the bats also use their voice to communicate with their peers, for which they choose a somewhat lower frequency range.

Neuroscientist Julio C. Hechavarria from the Institute for Cell Biology and Neuroscience at Goethe University, together with his team, examines which brain activities in the case of the eyewear nose go hand in hand with the vocalizations. In their latest study, the Frankfurters examined how the front lobes - a region in the front brain that is associated with the planning of actions in humans - and the auditory cortex, in which acoustic signals are processed, work together in the echolocation. For this purpose, the researchers used tiny electrodes on the bats, which recorded the activity of the nerve cells in the frontal lobe and in the auditory cortex.

Saturday, August 6, 2022

The many ways nature nurtures human well-being

Visitors leisurely enjoy an iris garden in Japan. Of all the pathways linking a single cultural ecosystem service to a single constituent of well-being captured from the academic literature, 86.3% represented positive contributions compared to just 11.7% negative contributions. 
Resized Image using AI by SFLORG
Credit: 2022 Nicola Burghall CC-BY-NC

A systematic review of 301 academic articles on “cultural ecosystem services” has enabled researchers to identify how these nonmaterial contributions from nature are linked to and significantly affect human well-being. They identified 227 unique pathways through which human interaction with nature positively or negatively affects well-being. These were then used to isolate 16 distinct underlying mechanisms, or types of connection, through which people experience these effects. This comprehensive review brings together observations from a fragmented field of research, which could be of great use to policymakers looking to benefit society through the careful use and protection of the intangible benefits of nature.

Do you ever feel the need for a bit of fresh air to energize yourself, or to spend time in the garden to relax? Aside from clean water, food and useful raw materials, nature provides many other benefits that we might overlook or find it hard to grasp and quantify. Research into cultural ecosystem services (CESs), the nonmaterial benefits we receive from nature, aims to better understand these contributions, whether they emerge through recreation and social experiences, or nature’s spiritual value and our sense of place.

Hundreds of CESs studies have explored the connections between nature and human well-being. However, they have often used different methods and measurements, or focused on different demographics and places. This fragmentation makes it difficult to identify overarching patterns or commonalities on how these intangible contributions really affect human well-being. Better understanding them could aid real-world decision-making about the environment, which could benefit individuals and the wider society.

Common weed may be ‘super plant’ that holds key to drought-resistant crops

Portulaca oleracea
Source: Yale University

A common weed harbors important clues about how to create drought resistant crops in a world beset by climate change.

Yale scientists describe how Portulaca oleracea, commonly known as purslane, integrates two distinct metabolic pathways to create a novel type of photosynthesis that enables the weed to endure drought while remaining highly productive, they report August 5 in the journal Science Advances.

“This is a very rare combination of traits and has created a kind of ‘super plant’ — one that could be potentially useful in endeavors such as crop engineering,” said Yale’s Erika Edwards, professor of ecology and evolutionary biology and senior author of the paper.

Plants have independently evolved a variety of distinct mechanisms to improve photosynthesis, the process by which green plants use sunlight to synthesize nutrients from carbon dioxide and water. For instance, corn and sugarcane evolved what is called C4 photosynthesis, which allows the plant to remain productive under high temperatures. Succulents such as cacti and agaves possess another type called CAM photosynthesis, which helps them survive in deserts and other areas with little water. Both C4 and CAM serve different functions but recruit the same biochemical pathway to act as “add-ons” to regular photosynthesis.

Featured Article

Discovery of unexpected collagen structure could ‘reshape biomedical research’

Jeffrey Hartgerink is a professor of chemistry and bioengineering at Rice. Photo Credit: Courtesy of Jeffrey Hartgerink / Rice University Co...

Top Viewed Articles