Life is full of processes to learn and then relearn when they become more elaborate. One day you log in to an app with just a password, then the next day you also need a code texted to you. One day you can just pop your favorite microwavable lunch into the oven for six straight minutes, but then the packaging changes and you have to cook it for three minutes, stir, and then heat it for three more. Our brains need a way to keep up. A new study by neuroscientists at The Picower Institute for Learning and Memory at MIT reveals some of the circuitry that helps a mammalian brain learn to add steps.
In Nature Communications the scientists report that when they changed the rules of a task, requiring rats to adjust from performing just one step to performing two, a pair of regions on the brain’s surface, or cortex, collaborated to update that understanding and change the rats’ behavior to fit the new regime. The anterior cingulate cortex (ACC) appeared to recognize when the rats weren’t doing enough and updated cells in the motor cortex (M2) to adjust the task behavior.
“I started this project about 7 or 8 years ago when I wanted to study decision making.” said Daigo Takeuchi, a researcher at the University of Tokyo who led the work as a postdoc at the RIKEN-MIT Laboratory for Neural Circuit Genetics at The Picower Institute directed by senior author and Picower Professor Susumu Tonegawa. “New studies were finding a role for M2. I wanted to study what upstream circuits were influencing this.”